Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 41(1): e1900447, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31747088

RESUMO

The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance.


Assuntos
Betaína/análogos & derivados , Incrustação Biológica/prevenção & controle , Polímeros/química , Adsorção , Animais , Betaína/química , Bovinos , Diatomáceas/fisiologia , Fibrinogênio/química , Hidrogéis/química , Hidrogéis/farmacologia , Metacrilatos/química , Polímeros/síntese química , Polímeros/farmacologia , Soroalbumina Bovina/química
2.
Langmuir ; 35(50): 16568-16575, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746204

RESUMO

Dendritic polyglycerols (PGs) were synthesized and postmodified by grafting of poly(ethylene glycol) (PEG) and polypropylene glycol (PPG) diglycidyl ether groups, and their antifouling and fouling-release properties were tested. Coating characterization by spectroscopic ellipsometry, contact angle goniometry, attenuated total internal reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and atomic force microscopy showed brushlike morphologies with a high degree of microscale roughness and the ability to absorb large amounts of water within seconds. PGs with three different thicknesses were tested in laboratory assays against settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of zoospores of the alga Ulva linza. Very low coating thicknesses, e.g., 11 nm, reduced the settlement of barnacles, under static conditions, to 2% compared with 55% for an octadecyltrichlorosilane reference surface. In contrast, zoospores of U. linza settled readily but the vast majority were removed by exposure to a shear force of 52 Pa. Both PEG and PPG modification increased the antifouling properties of the PG films, providing a direct comparison of the ultralow fouling properties of all three polymers. Both, the modified and the nonmodified PGs are promising components for incorporation into amphiphilic fouling-resistant coatings.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/microbiologia , Incrustação Biológica/prevenção & controle , Dendrímeros/química , Glicerol/química , Glicerol/farmacologia , Polímeros/química , Polímeros/farmacologia , Animais , Propriedades de Superfície , Thoracica/efeitos dos fármacos , Thoracica/microbiologia , Ulva/efeitos dos fármacos , Ulva/microbiologia
3.
Anal Bioanal Chem ; 408(5): 1487-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715248

RESUMO

Barnacles are able to establish stable surface contacts and adhere underwater. While the composition of adult barnacle cement has been intensively studied, far less is known about the composition of the cement of the settlement-stage cypris larva. The main challenge in studying the adhesives used by these larvae is the small quantity of material available for analysis, being on the order of nanograms. In this work, we applied, for the first time, synchrotron radiation-based µ-X-ray fluorescence analysis (SR-µ-XRF) for in vivo and in situ analysis of young barnacles and barnacle cyprids. To obtain biologically relevant information relating to the body tissues, adhesives, and shell of the organisms, an in situ sample environment was developed to allow direct microprobe investigation of hydrated specimens without pretreatment of the samples. In 8-day-old juvenile barnacles (Balanus improvisus), the junctions between the six plates forming the shell wall showed elevated concentrations of calcium, potassium, bromine, strontium, and manganese. Confocal measurements allowed elemental characterization of the adhesive interface of recently attached cyprids (Balanus amphitrite), and substantiated the accumulation of bromine both at the point of initial attachment as well as within the cyprid carapace. In situ measurements of the cyprid cement established the presence of bromine, chlorine, iodine, sulfur, copper, iron, zinc, selenium, and nickel for both species. The previously unrecognized presence of bromine, iron, and selenium in the cyprid permanent adhesive will hopefully inspire further biochemical investigations of the function of these substances.


Assuntos
Adesivos/análise , Compostos Inorgânicos/análise , Larva/química , Espectrometria por Raios X/métodos , Síncrotrons/instrumentação , Thoracica/química , Animais , Comportamento Animal , Meio Ambiente , Fluorescência , Thoracica/crescimento & desenvolvimento
4.
Colloids Surf B Biointerfaces ; 102: 923-30, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23138001

RESUMO

The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption.


Assuntos
Incrustação Biológica/prevenção & controle , Microscopia de Força Atômica/métodos , Polímeros/química , Fibronectinas/química , Oligopeptídeos/química , Peptídeos/química
5.
Biofouling ; 26(6): 673-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658383

RESUMO

Zwitterionic polymers such as poly(sulfobetaine methacrylate) (polySBMA) and poly(carboxybetaine methacrylate) (polyCBMA) have demonstrated impressive fouling-resistance against proteins and mammalian cells. In this paper, the effects of these surface chemistries on the settlement and behavior of an ubiquitous fouling organism, the cypris larva of the barnacle Balanus amphitrite (=Amphibalanus amphitrite), were studied in the laboratory. Conventional settlement assays and behavioral analysis of cyprids using Noldus Ethovision 3.1 demonstrated significant differences in settlement and behavior on different surfaces. Cyprids did not settle on the polySBMA or polyCBMA surfaces over the course of the assay, whereas settlement on glass occurred within expected limits. Individual components of cyprid behavior were shown to differ significantly between glass, polySBMA and polyCBMA. Cyprids also responded differently to the two zwitterionic surfaces. On polySBMA, cyprids were unwilling or unable to settle, whereas on polyCBMA cyprids did not attempt exploration and left the surface quickly. In neither case was toxicity observed. It is concluded that a zwitterionic approach to fouling-resistant surface development has considerable potential in marine applications.


Assuntos
Comportamento Animal/efeitos dos fármacos , Betaína/análogos & derivados , Incrustação Biológica/prevenção & controle , Ácidos Polimetacrílicos/farmacologia , Thoracica/efeitos dos fármacos , Animais , Betaína/química , Betaína/farmacologia , Betaína/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/toxicidade , Thoracica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA