Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(1): 539-547, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173611

RESUMO

A solid redox mediator (solid electrolyte) with an electrical conductivity (σ25°C) greater than 10-4 S cm-1 is an essential requirement for a dye-sensitized solar cell in the harsh weather of Gulf countries. This paper reports the electrical properties of solid redox mediators prepared using highly dissociable ionic salts: Co[tris-(2,2'-bipyridine)]3(TFSI)2, Co[tris-(2,2'-bipyridine)]3(TFSI)3, and LiCF3SO3 as a source of Co2+, Co3+, and Li+ ions, respectively, in a solid matrix: [(1 - x)succinonitrile:xpoly(ethylene oxide)], where x = 0, 0.5, and 1 in weight fraction. In the presence of large size of cations (Co2+ and Co3+) and large-sized and weakly-coordinated anions (TFSI- and CF3SO3-), only the succinonitrile-poly(ethylene oxide) blend (x = 0.5) resulted in highly conductive amorphous regions with σ25°C of 4.7 × 10-4 S cm-1 for EO/Li+ = 108.4 and 3.1 × 10-4 S cm-1 for EO/Li+ = 216.8. These values are slightly lower than 1.5 × 10-3 S cm-1 for x = 0 and higher than 6.3 × 10-7 S cm-1 for x = 1. Only blend-based electrolytes exhibited a downward curve in the log σ-T-1 plot, a low value of pseudo-activation energy (0.06 eV), a high degree of transparency, and high thermal stability, making it useful for device applications.

2.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145873

RESUMO

An all-solid−state dye-sensitized solar cell is one of the non-fossil fuel-based electrochemical devices for electricity generation in a high-temperature region. This device utilizes a redox mediator, which is a fast ion-conducting solid polymer electrolyte (SPE). The SPE makes the device economical, thinner, and safer in high-temperature regions. The SPE generally has a form of matrix−plasticizer−redox salts. Succinonitrile (SN) is generally employed as a plasticizer for reducing the crystallinity of poly(ethylene oxide), abbreviated as PEO, a common polymeric matrix. In the present paper, the structural and thermal properties of tetramethyl succinonitrile (TMSN) were compared with SN for its application as a solid plasticizer. TMSN and SN both are plastic crystals. TMSN has four methyl groups by replacing the hydrogen of the SN, resulting in higher molecular weight, solid−solid phase transition temperature, and melting temperature. We thoroughly studied the structural, thermal, and electrical properties of the [(1−x)PEO: xTMSN] blend for utilizing it as a matrix, where x = 0−0.25 in mole fraction. The FT-IR spectra and XRD patterns of the blends exhibited PEO-alike up to x = 0.15 mole and TMSN-alike for x > 0.15 mole. Differential scanning calorimetry revealed formation of a eutectic phase from x = 0.1 mole and phase separation from x = 0.15 mole. The blends with x = 0.1−0.15 mole had a low value of PEO crystallinity. Thermogravimetric analysis showed thermal stability of the blends up to 75 °C. The blends exhibited electrical conductivity, σ25°C more than 10−9 S cm−1, and Arrhenius behavior (activation energy, ~0.8 eV) in a temperature region, 25−50 °C.

3.
Macromol Rapid Commun ; 43(6): e2100764, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086162

RESUMO

Dye-sensitized solar cell (DSSC) is a promising alternative to the commercially available amorphous silicon-based solar cell because of several advantageous properties. A DSSC with a fast ion conducting solid polymer electrolyte is required for the arid atmosphere of Gulf countries. In this work, a new matrix, poly(ethylene oxide)-tetramethyl succinonitrile blend to synthesize a blend-LiI-I2 solid polymer electrolyte for the DSSC application has been proposed. The tetramethyl succinonitrile is a member of plastic crystal with a solid-solid phase transition temperature (Tpc ) of ≈71 °C and melting temperature (Tm ) of ≈170.5 °C. Its molar fraction, 0.1-0.15 is sufficient enough for synthesizing a polymer electrolyte with electrical conductivity of >10-4 S cm-1 at room temperature. This electrolyte shows Vogel-Tamman-Fulcher type behavior with a low value (≈0.083 eV) of pseudo-activation energy for easy ion transport. The results of Fourier-transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies reveal the plasticizing effect of tetramethyl succinonitrile to form an amorphous phase. This electrolyte results in a ≈661% gain in short-circuit current density and thereby a ≈552% gain in the cell efficiency (≈3.5%) with respect to the DSSC prepared with the tetramethyl succinonitrile-free electrolyte.


Assuntos
Polietilenoglicóis , Polímeros , Eletrólitos/química , Óxido de Etileno , Nitrilas , Plastificantes , Polietilenoglicóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA