Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pharmaceutics ; 16(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543298

RESUMO

It is evident that radiolabeled drug delivery systems hold great promise in the field of lung cancer management. The combination of therapeutic agents with radiotracers not only allows for precise localization within lung tumors but also enables real-time monitoring of drug distribution. This approach has the potential to enhance targeted therapy and improve patient outcomes. The integration of advanced imaging modalities, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), has played a crucial role in the non-invasive tracking of radiolabeled drugs. These techniques provide valuable insights into drug pharmacokinetics, biodistribution, and tumor-targeting efficiency, offering clinicians the ability to personalize treatment regimens. The comprehensive analysis of preclinical and clinical studies presented in this review underscores the progress made in the field. The evidence suggests that radiolabeled drug delivery systems have the potential to revolutionize oncology by offering precise, targeted, and image-guided therapeutic interventions for lung cancer. This innovative approach not only enhances the effectiveness of treatment but also contributes to the development of personalized medicine strategies, tailoring interventions to the specific characteristics of each patient's cancer. The ongoing research in this area holds promise for further advancements in lung cancer management, potentially leading to improved outcomes and quality of life for patients.

2.
Int J Pharm ; 652: 123765, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38195032

RESUMO

Despite the successful use of the radiopharmaceutical radium-223 dichloride ([223Ra]RaCl2) for targeted alpha therapy of castration-resistant prostate cancer patients with bone metastases, some short-term side effects, such as diarrhea and vomiting, have been documented, causing patient discomfort. Hence, we prepared a nanosized micellar solution of [223Ra]RaCl2 and evaluated its biodistribution, pharmacokinetics, and induced biochemical changes in healthy mice up to 96 h after intraperitoneal administration as an alternative to overcome the previous limitations. In addition, we evaluated the bone specificity of micellar [223Ra]RaCl2 in patient-derived xenografts in the osteosarcoma model. The biodistribution studies revealed the high bone-targeting properties of the micellar [223Ra]RaCl2. Interestingly, the liver uptake remained significantly low (%ID/g = 0.1-0.02) from 24 to 96 h after administration. In addition, the micellar [223Ra]RaCl2 exhibited a significantly higher uptake in left (%ID/g = 0.85-0.23) and right (%ID/g = 0.76-0.24) kidneys than in small (%ID/g = 0.43-0.06) and large intestines (%ID/g = 0.24-0.09) over time, suggesting its excretion pathway is primarily through the kidneys into the urine, in contrast to the non-micellar [223Ra]RaCl2. The micellar [223Ra]RaCl2 also had low distribution volume (0.055 ± 0.003 L) and longer elimination half-life (28 ± 12 days). This nanosystem was unable to change the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, gamma GT, glucose, and liquiform lipase in the treated mice. Finally, microscopic examination of the animals' osteosarcoma tumors treated with micellar [223Ra]RaCl2 indicated regression of the tumor, with large areas of necrosis. In contrast, in the control group, we observed tumor cellularity and cell anaplasia, mitotic figures and formation of neoplastic extracellular bone matrix, which are typical features of osteosarcoma. Therefore, our findings demonstrated the efficiency and safety of nanosized micellar formulations to minimize the gastrointestinal excretion pathway of the clinical radiopharmaceutical [223Ra]RaCl2, in addition to promoting regression of the osteosarcoma. Further studies must be performed to assess dose-response outcomes and organ/tissue dosimetry for clinical translation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Animais , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Eliminação Renal , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/radioterapia , Osteossarcoma/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia
3.
J Funct Biomater ; 14(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37754891

RESUMO

Breast cancer is a leading cause of cancer-related mortality among women worldwide, with millions of new cases diagnosed yearly. Addressing the burden of breast cancer mortality requires a comprehensive approach involving early detection, accurate diagnosis, effective treatment, and equitable access to healthcare services. In this direction, nano-radiopharmaceuticals have shown potential for enhancing breast cancer diagnosis by combining the benefits of nanoparticles and radiopharmaceutical agents. These nanoscale formulations can provide improved imaging capabilities, increased targeting specificity, and enhanced sensitivity for detecting breast cancer lesions. In this study, we developed and evaluated a novel nano-radio radiopharmaceutical, technetium-99m ([99mTc]Tc)-labeled trastuzumab (TRZ)-decorated methotrexate (MTX)-loaded human serum albumin (HSA) nanoparticles ([99mTc]-TRZ-MTX-HSA), for the diagnosis of breast cancer. In this context, HSA and MTX-HSA nanoparticles were prepared. Conjugation of MTX-HSA nanoparticles with TRZ was performed using adsorption and covalent bonding methods. The prepared formulations were evaluated for particle size, PDI value, zeta (ζ) potential, scanning electron microscopy analysis, encapsulation efficiency, and loading capacity and cytotoxicity on MCF-7, 4T1, and MCF-10A cells. Finally, the nanoparticles were radiolabeled with [99mTc]Tc using the direct radiolabeling method, and cellular uptake was performed with the nano-radiopharmaceutical. The results showed the formation of spherical nanoparticles, with a particle size of 224.1 ± 2.46 nm, a PDI value of 0.09 ± 0.07, and a ζ potential value of -16.4 ± 0.53 mV. The encapsulation efficiency of MTX was found to be 32.46 ± 1.12%, and the amount of TRZ was 80.26 ± 1.96%. The labeling with [99mTc]Tc showed a high labeling efficiency (>99%). The cytotoxicity studies showed no effect, and the cellular uptake studies showed 97.54 ± 2.16% uptake in MCF-7 cells at the 120th min and were found to have a 3-fold higher uptake in cancer cells than in healthy cells. In conclusion, [99mTc]Tc-TRZ-MTX-HSA nanoparticles are promising for diagnosing breast cancer and evaluating the response to treatment in breast cancer patients.

4.
Curr Med Chem ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594105

RESUMO

Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; ß-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.

5.
Colloids Surf B Biointerfaces ; 223: 113174, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746067

RESUMO

The use of targeted alpha therapy (TAT) for bone cancer is increasing each year. Among the alpha radionuclides, radium [223Ra]Ra+2 is the first one approved for bone cancer metastasis therapy. The development of novel radiopharmaceutical based on [223Ra]Ra+2 is essential to continuously increase the arsenal of new TAT drugs. In this study we have developed, characterized, and in vitro evaluated [223Ra] Ra-nano-hydroxyapatite. The results showed that [223Ra] Ra-nano-hydroxyapatite has a dose-response relationship for osteosarcoma cells and a safety profile for human fibroblast cells, corroborating the application as a radiopharmaceutical.


Assuntos
Neoplasias Ósseas , Nanoestruturas , Osteossarcoma , Rádio (Elemento) , Humanos , Compostos Radiofarmacêuticos , Rádio (Elemento)/química , Rádio (Elemento)/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico
6.
Cells ; 12(3)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766793

RESUMO

The use of alpha-particle (α-particle) radionuclides, especially [223Ra]RaCl2 (radium dichloride), for targeted alpha therapy is steadily increasing. Despite the positive clinical outcomes of this therapy, very little data are available about the effect on the ultrastructure of cells. The purpose of this study was to evaluate the nanomechanical and ultrastructure effect of [223Ra] RaCl2 on cancer cells. To analyze the effect of [223Ra]RaCl2 on tumor cells, human breast cancer cells (lineage MDA-MB-231) were cultured and treated with the radiopharmaceutical at doses of 2 µCi and 0.9 µCi. The effect was evaluated using atomic force microscopy (AFM) and transmission electron microscopy (TEM) combined with Raman spectroscopy. The results showed massive destruction of the cell membrane but preservation of the nucleus membrane. No evidence of DNA alteration was observed. The data demonstrated the formation of lysosomes and phagosomes. These findings help elucidate the main mechanism involved in cell death during α-particle therapy.


Assuntos
Neoplasias , Rádio (Elemento) , Humanos , Compostos Radiofarmacêuticos , Rádio (Elemento)/uso terapêutico , Radioisótopos , Partículas alfa/uso terapêutico , Membrana Celular , Neoplasias/tratamento farmacológico
7.
Drug Chem Toxicol ; 46(4): 665-676, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35635136

RESUMO

Notwithstanding the advances in molecular target-based drugs, chemotherapy remains the most common cancer treatment, despite its high toxicity. Consequently, effective anticancer therapies with fewer adverse effects are needed. Therefore, this study aimed to determine the anticancer activity of the dichloromethane fraction (DCMF) isolated from Arrabidae brachypoda roots, whose components are three unusual dimeric flavonoids. The toxicity of DCMF was investigated in breast (MCF-7), prostate (DU145), and cervical (HeLa) tumor cells, as well as non-tumor cells (PNT2), using sulforhodamine B (cell viability), Comet (genotoxicity), clonogenicity (reproductive capacity) and wound healing (cell migration) assays, and atomic force microscopy (AFM) for ultrastructural cell membrane alterations. Molecular docking revealed affinity between albumin and each rare flavonoid, supporting the impact of fetal bovine serum in DCMF antitumor activity. The IC50 values for MCF7, HeLa, and DU145 were 2.77, 2.46, and 2.51 µg/mL, respectively, and 4.08 µg/mL for PNT2. DCFM was not genotoxic to tumor or normal cells when exposed to twice the IC50 for up to 24 h, but it inhibited tumor cell migration and reproduction compared to normal cells. Additionally, AFM revealed alterations in the ultrastructure of tumor nuclear membrane surfaces, with a positive correlation between DCMF concentration and tumor cell roughness. Finally, we found a negative correlation between roughness and the ability of DCMF-treated tumor cells to migrate and form colonies with more than 50 cells. These findings suggest that DCFM acts by causing ultrastructural changes in tumor cell membranes while having fewer toxicological effects on normal cells.


Assuntos
Flavonoides , Neoplasias , Masculino , Humanos , Flavonoides/farmacologia , Flavonoides/química , Simulação de Acoplamento Molecular , Células HeLa , Membrana Celular , Sobrevivência Celular , Linhagem Celular Tumoral
8.
Rev Bras Farmacogn ; 33(1): 73-88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466145

RESUMO

The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-022-00338-7.

9.
Viruses ; 14(12)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36560825

RESUMO

Chikungunya virus (CHIKV) belongs to the genus Alphaviridae, with a single-stranded positive-sense RNA genome of 11.8 kbp encoding a polyprotein that generates both non-structural proteins and structural proteins. The virus is transmitted by the Aedes aegypti and A. albopictus mosquitoes, depending on the location. CHIKV infection leads to dengue-like musculoskeletal symptoms and has been responsible for several outbreaks worldwide since its discovery in 1952. Patients often experience fever, headache, muscle pain, joint swelling, and skin rashes. However, the ultrastructural and mechanical properties of CHIKV have not been fully characterized. Thus, this study aims to apply a physical approach to investigate CHIKV's ultrastructural morphology and mechanical properties, using atomic force microscopy and Raman spectroscopy as the main tools. Using nanomechanical assays of AFM and a gold nanoparticles substrate for Raman signal enhancement, we explored the conformational plasticity, morphology, vibrational signature, and nanomechanical properties of the chikungunya virus, providing new information on its ultrastructure at the nanoscale and offering a novel understanding of the virus' behavior upon mechanical disruptions besides its molecular composition.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Nanopartículas Metálicas , Animais , Humanos , Ouro , Vírus Chikungunya/genética , RNA , Vírion
10.
Eur J Pharm Biopharm ; 180: 91-100, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36154904

RESUMO

The use of graphene quantum dots as biomedical devices and drug delivery systems has been increasing. The nano-platform of pure carbon has shown unique properties and is approved to be safe for human use. In this study, we successfully produced and characterized folic acid-functionalized graphene quantum dots (GQD-FA) to evaluate their antiviral activity against Zika virus (ZIKV) infection in vitro, and for radiolabeling with the alpha-particle emitting radionuclide radium-223. The in vitro results exhibited the low cytotoxicity of the nanoprobe GQD-FA in Vero E6 cells and the antiviral effect against replication of the ZIKV infection. In addition, our findings demonstrated that functionalization with folic acid doesn't improve the antiviral effect of graphene quantum dots against ZIVK replication in vitro. On the other hand, the radiolabeled nanoprobe 223Ra@GQD-FA was also produced as confirmed by the Energy Dispersive X-Ray Spectroscopy analysis. 223Ra@GQD-FA might expand the application of alpha targeted therapy using radium-223 in folate receptor-overexpressing tumors.


Assuntos
Grafite , Pontos Quânticos , Infecção por Zika virus , Zika virus , Humanos , Pontos Quânticos/química , Grafite/química , Ácido Fólico/química , Antivirais/farmacologia
11.
Eur J Pharm Biopharm ; 176: 180-187, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35640783

RESUMO

Graphene and its derivatives are in the edge of technology with a wide and diverse range of applications. In the last years, especially graphene quantum dots (GQDs) have had their biomedical application expanded in scope, mainly focused on cancer therapy, drug delivery and imaging. Although many studies have evaluated the application of this nanomaterial in biomedical field, only a few studies aimed to understand their biological impact in human health. In this regard, here we evaluated the impact of high doses of GQDs on the microcirculation of a healthy animal model to better assess risks of its use in humans. Our data show that successive applications of GQDs cause irreversible damage to the microcirculation. After seven days, a complete destruction of the microcirculation has been observed. In addition, GQDs showed substantial activity in human erythrocytes. Our findings suggest that risks associated with the use of GQDs, as well as all graphene derivatives, must be better understood, especially concerning biomedical application. A greater understanding of how GQDs impact body circulation, including the context of environmental and engineered nanosystems, is of paramount importance.


Assuntos
Grafite , Nanoestruturas , Pontos Quânticos , Animais , Microcirculação
12.
EJNMMI Radiopharm Chem ; 7(1): 8, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467307

RESUMO

BACKGROUND: Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS: Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION: Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.

13.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406278

RESUMO

Alpha and beta particulate radiation are used for non-treated neoplasia, due to their ability to reach and remain in tumor sites. Radium-223 (223Ra), an alpha emitter, promotes localized cytotoxic effects, while radioactive gold (198Au), beta-type energy, reduces radiation in the surrounding tissues. Nanotechnology, including several radioactive nanoparticles, can be safely and effectively used in cancer treatment. In this context, this study aims to analyze the antitumoral effects of [223Ra]Ra nanomicelles co-loaded with radioactive gold nanoparticles ([198Au]AuNPs). For this, we synthesize and characterize nanomicelles, as well as analyze some parameters, such as particle size, radioactivity emission, dynamic light scattering, and microscopic atomic force. [223Ra]Ra nanomicelles co-loaded with [198Au]AuNPs, with simultaneous alpha and beta emission, showed no instability, a mean particle size of 296 nm, and a PDI of 0.201 (±0.096). Furthermore, nanomicelles were tested in an in vitro cytotoxicity assay. We observed a significant increase in tumor cell death using combined alpha and beta therapy in the same formulation, compared with these components used alone. Together, these results show, for the first time, an efficient association between alpha and beta therapies, which could become a promising tool in the control of tumor progression.

14.
Drug Deliv ; 29(1): 186-191, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35191342

RESUMO

The treatment of bone metastatsis as primary bone cancer itself is still a challenge. The use od radium dichloride ([223Ra] RaCl2) has emerged in the last few years as one of the best treatment choice for bone cancer, with especial focus in bone metastasis. The alpha-emitter radiopharmaceutical has showed potent and efficient results in several clinical trials. In this study we have formulated radium dichloride ([223Ra] RaCl2) nanomicelles in order to evaluate and compare with pure radium dichloride ([223Ra] RaCl2). The results showed that nanomicelles at the same dose had a superior effect (20% higher efficient) when compared with pure radium dichloride ([223Ra] RaCl2). The results corroborated the effectiveness of the nanosystem validating the application of nanotechnology in alpha-radiotherapy with radium dichloride ([223Ra] RaCl2).


Assuntos
Neoplasias Ósseas/patologia , Nanopartículas/química , Osteossarcoma/patologia , Compostos Radiofarmacêuticos/farmacologia , Rádio (Elemento)/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Humanos , Micelas , Tamanho da Partícula , Poloxâmero/química , Radioisótopos/administração & dosagem , Radioisótopos/farmacologia , Compostos Radiofarmacêuticos/administração & dosagem , Rádio (Elemento)/administração & dosagem
15.
J Nanostructure Chem ; 12(5): 693-727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34512930

RESUMO

Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations.

16.
Colloids Surf B Biointerfaces ; 211: 112280, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902784

RESUMO

Aptamers may form well-defined three-dimensional structures binding with high affinity and stability to a specific receptor. The aptamer anti-MUC1 isoform Y is one the most used due the affinity to MUC1, which is overexpressed in several types of cancer and inflammation process. In this study we have developed, characterized, in vitro as in vivo evaluated a nanoaptamer (anti-MUC1/Y) as a nanoagent for rheumatoid arthritis treatment. The results showed that a nanoaptamer with a size range of 241 nm was produced. The entrapment efficacy was 90% with a biodistribution showing a high hepatic uptake (>98%). The results in vivo showed a potent effect in arthritis experimental model, especially in low doses. The results corroborate the applicability of this nanosystem for RA treatment.


Assuntos
Aptâmeros de Nucleotídeos , Artrite , Nanopartículas , Aptâmeros de Nucleotídeos/química , Humanos , Mucina-1/química , Nanopartículas/química , Distribuição Tecidual
17.
ACS Omega ; 7(51): 47956-47966, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591122

RESUMO

The necessity of new drugs for lung cancer therapy and imaging is increasing each day. The development of new drugs that are capable of reaching the tumor with specificity and selectivity is required. In this direction, the design of nanoparticles for tumor therapy represents an important alternative. The aim of this study was to develop, characterize, and evaluate target-specific atezolizumab-conjugated poly(lactic acid)/poly(vinyl alcohol) (PLA/PVA) nanoparticles as pharmaceutical fragment candidates for new radiopharmaceuticals. For this purpose, PLA/PVA nanoparticle formulations were prepared by the double emulsification/solvent evaporation method with a high-speed homogenizer. A special focus was oriented to the selection of a suitable method for modification of the nanoparticle surface with a monoclonal antibody. For this purpose, atezolizumab was bound to the nanoparticles during the preparation by solvent evaporation or either by adsorption or covalent binding. PLA/PVA/atezolizumab nanoparticles are characterized by dynamic light scattering, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. An in vitro assay was performed to evaluate the antibody binding efficiency, stability, and cytotoxicity [A549 (lung cancer cell) and L929 (healthy fibroblast cell)]. The results showed that a spherical nanoparticle with a size of 230.6 ± 1.768 nm and a ζ potential of -2.23 ± 0.55 mV was produced. Raman spectroscopy demonstrated that the monoclonal antibody was entrapped in the nanoparticle. The high antibody binding efficiency (80.58%) demonstrated the efficacy of the nanosystem. The cytotoxic assay demonstrated the safety of the nanoparticle in L929 and the effect on A549. In conclusion, PLA/PVA/atezolizumab nanoparticles can be used as drug delivery systems for lung cancer diagnosis and therapy.

18.
J Biomed Nanotechnol ; 17(9): 1858-1865, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688331

RESUMO

The necessity of new drugs with special attention for the therapy of cancer is increasing each day. Despite their properties, alpha therapeutic radiopharmaceuticals, especially based on the use of radium (223Ra) are good choices, due to the highest and differential cytotoxicity, low adverse effects, and higher bioaccumulation on tumor sites. The use of graphene quantum dots as the carrier for 223Ra is a promising approach since graphene quantum dots has low toxicity, high biocompatibility, and adequate size for tumor penetration. In this study, we developed, characterized, radiolabeled with 223Ra, and evaluated in vitro and in vivo graphene quantum dots radiolabeled with radium (223Ra) for bone cancer. The results showed that 223Ra is incorporated into the graphene quantum dot following the Fajans-Paneth-Hahn Law. The cell viability showed a potent effect on osteosarcoma cells (MG63 and SAOS2) but a lower effect in normal fibroblast cells (hFB), corroborating the preferential targeting. Also, the results showed a more prominent effect on MG63 than SAOS2 cells, corroborating the targeting for more undifferentiated cells. The in vivo results demonstrated a renal excretion, associated with fecal excretion and accumulation in bone. The results corroborate the efficacy of 223RaGQDs and open new perspectives for the use of use 223RaGQDs, in several other diseases.


Assuntos
Neoplasias Ósseas , Grafite , Osteossarcoma , Pontos Quânticos , Rádio (Elemento) , Neoplasias Ósseas/radioterapia , Humanos , Osteossarcoma/radioterapia
19.
Nanotechnology ; 32(43)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34271563

RESUMO

The urgency for new materials in oncology is immediate. In this study we have developed the g-C3N4, a graphitic-like structure formed by periodically linked tris-s-triazine units. The g-C3N4has been synthesized by a simple and fast thermal process. XRD has shown the formation of the crystalline sheet with a compacted structure. The graphite-like structure and the functional groups have been shown by Raman and FTIR spectroscopy. TEM image and AFM revealed the porous composed of five or six C-N layers stacked. DRS and Photoluminescence analyses confirmed the structure with band gap of 2.87 eV and emission band at 448 nm in different wavelengths excitation conditions. The biological results showed inhibitory effect on cancer cell lines and non-toxic effect in normal cell lines. To the best of our knowledge, this is the first work demonstrating the cytotoxic effects of 2D g-C3N4in a cancer cell line, without any external or synergistic influence. The biodistribution/tissue accumulation showed that g-C3N4present a tendency to accumulation on the lung in the first 2 h, but after 24 h the profile of the biodistribution change and it is found mainly in the liver. Thus, 2D-g-C3N4showed great potential for the treatment of several cancer types.


Assuntos
Sobrevivência Celular , Grafite/síntese química , Grafite/metabolismo , Compostos de Nitrogênio/síntese química , Compostos de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Distribuição Tecidual
20.
J Biomed Nanotechnol ; 17(1): 131-148, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653502

RESUMO

Graphene, including graphene quantum dots, its oxide and unoxidized forms (pure graphene) have several properties, like fluorescence, electrical conductivity, theoretical surface area, low toxicity, and high biocompatibility. In this study, we evaluated genotoxicity (in silico analysis using the functional density theory-FDT), cytotoxicity (human glioblastoma cell line), in vivo pharmacokinetics, in vivo impact on microcirculation and cell internalization assay. It was also radiolabeled with lutetium 177 (177Lu), a beta emitter radioisotope to explore its therapeutic use as nanodrug. Finally, the impact of its disposal in the environment was analyzed using ecotoxicological evaluation. FDT analysis demonstrated that graphene can construct covalent and non-covalent bonds with different nucleobases, and graphene oxide is responsible for generation of reactive oxygen species (ROS), corroborating its genotoxicity. On the other hand, non-cytotoxic effect on glioblastoma cells could be demonstrated. The pharmacokinetics analysis showed high plasmatic concentration and clearance. Topical application of 0.1 and 1 mg/kg of graphene nanoparticles on the hamster skinfold preparation did not show inflammatory effect. The cell internalization assay showed that 1-hour post contact with cells, graphene can cross the plasmatic membrane and accumulate in the cytoplasm. Radio labeling with 177Lu is possible and its use as therapeutic nanosystem is viable. Finally, the ecotoxicity analysis showed that A. silina exposed to graphene showed pronounced uptake and absorption in the nauplii gut and formation of ROS. The data obtained showed that although being formed exclusively of carbon and carbon-oxygen, graphene and graphene oxide respectively generate somewhat contradictory results and more studies should be performed to certify the safety use of this nanoplatform.


Assuntos
Grafite , Nanopartículas , Pontos Quânticos , Sobrevivência Celular , Grafite/toxicidade , Humanos , Óxidos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA