Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257390

RESUMO

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Assuntos
Compostos Azo , Lacase , Polyporaceae , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Poli A
2.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831624

RESUMO

Genome-wide association studies have reported link between SNPs and risk of breast cancer. This study investigated the association of the selected gene variants by predicting them as possible target genes. Molecular technique advances with the availability of whole-exome sequencing (WES), now offer opportunities for simultaneous investigations of many genes. The experimental protocol for PI3K, AKT-1, KLF-14, MDM4, miRNAs 27a, and miR-196a genotyping was done by ARMS-PCR and sanger sequencing. The novel and known gene variants were studied by Whole-exome sequencing using Illumina NovaSeq 6000 platform. This case control study reports significant association between BC patients, healthy controls with the polymorphic variants of PI3K C > T, AKT-1 G > A KLF 14 C > T, MDM4 A > G, miR-27a A > G, miR-196a-2 C > T genes (p < 0.05). MDM4 A > G genotypes were strongly associated with BC predisposition with OR 2.08 & 2.15, p < 0.05) in codominant and dominant models respectively. MDM4 A allele show the same effective (OR1.76, p < 0.05) whereas it remains protective in recessive model for BC risk. AKT1G > A genotypes were strongly associated with the BC susceptibility in all genetic models whereas PI3K C > T genotypes were associated with breast cancer predisposition in recessive model OR 6.96. Polymorphic variants of KLF-14 A > G, MDM4G > A, MiR-27aA >G, miR-196a-C > T were strongly associated with stage, tamoxifen treatment. Risk variants have been reported by whole exome sequencing in our BC patients. It was concluded that a strong association between the PI3K-AKT signaling pathway gene variants with the breast cancer susceptibility and progression. Similarly, KLF 14-AA, MDM4-GA, miR27a-GG and miR-196a-CT gene variants were associated with the higher risk probability of BC and were strongly correlated with staging of the BC patients. This study also reported Low, novel, and intermediate-genetic-risk variants of PI3K, AKT-1, MDM4G & KLF-14 by utilizing whole-exome sequencing. These variants should be further investigated in larger cohorts' studies.

3.
Medicina (Kaunas) ; 58(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422197

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a'a at the 3'UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3'UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.


Assuntos
Falência Renal Crônica , Rim Policístico Autossômico Dominante , Insuficiência Renal Crônica , Adulto , Humanos , Regiões 3' não Traduzidas , Proteínas de Membrana/genética , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/diagnóstico , Arábia Saudita , Canais de Cátion TRPP/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA