Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Med Chem ; 64(15): 11432-11444, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34283610

RESUMO

Human (h) telomerase (TL; EC 2.7.7.49) plays a key role in sustaining cancer cells by means of elongating telomeric repeats at the 3' ends of chromosomes. Since TL-inhibitor (TI) stand-alone cancer therapy has been proven to be remarkably challenging, a polypharmacological approach represents a valid alternative. Here we consider a series of compounds able to inhibit both hTL and the tumor-associated carbonic anhydrases (CAs; EC 4.2.1.1) IX and XII. Compounds 7 and 9 suppressed hTL activity in both cell lysates and human colon cancer cell lines, and prolonged incubation with either 7 or 9 resulted in telomere shortening, cell cycle arrest, replicative senescence, and apoptosis. Enzyme kinetics showed that 7 and 9 are mixed-type inhibitors of the binding of DNA primers and deoxynucleoside triphosphate (dNTP) to the TL catalytic subunit hTERT, which is in agreement with docking experiments. Compound 9 showed antitumor activity in Colo-205 mouse xenografts and suppressed telomerase activity by telomere reduction.


Assuntos
Antineoplásicos/farmacologia , Anidrases Carbônicas/metabolismo , Inibidores Enzimáticos/farmacologia , Sulfonamidas/farmacologia , Telomerase/antagonistas & inibidores , Zidovudina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Sulfonamidas/química , Telomerase/metabolismo , Células Tumorais Cultivadas , Zidovudina/química
3.
ESC Heart Fail ; 8(5): 4296-4300, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327860

RESUMO

Giant cell myocarditis (GCM) is a rare condition. Its association with SARS-CoV-2 has not been described before. The 46-year-old female patient was admitted to the clinic on September 2020. She had 7 year adrenal insufficiency history and infarct-like debut of myocardial disease in November 2019. After COVID-19 in April 2020, cardiac disease progressed. The examination showed low QRS voltage, QS complexes in V1 -V5 leads, atrial standstill, left ventricular systolic and restrictive dysfunction, elevated anti-heart antibodies, and subepicardial late gadolinium enhancement by magnetic resonance imaging. Endomyocardial biopsy and pacemaker implantation were performed, but the patient died suddenly due to ventricular tachycardia or ventricular fibrillation (the resuscitation was ineffective). The autopsy revealed GCM, SARS-CoV-2, and Parvovirus B19 were detected in the myocardium. The role of SARS-CoV-2 in the pathogenesis of autoimmune myocarditis is discussed.


Assuntos
COVID-19 , Cardiomiopatias , Meios de Contraste , Morte Súbita Cardíaca/etiologia , Feminino , Gadolínio , Doenças Genéticas Inatas , Células Gigantes , Átrios do Coração/anormalidades , Bloqueio Cardíaco , Humanos , Pessoa de Meia-Idade , SARS-CoV-2
4.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008089

RESUMO

The anticancer effect of L-asparaginases (L-ASNases) is attributable to their ability to hydrolyze L-asparagine in the bloodstream and cancer cell microenvironment. Rhodospirillum rubrum (RrA) has dual mechanism of action and plays a role in the suppression of telomerase activity. The aim of this work was to investigate the possible mechanism of RrA penetration into human cancer cells. Labeling of widely used L-ASNases by fluorescein isothiocyanate followed by flow cytometry and fluorescent microscopy demonstrated that only RrA can interact with cell membranes. The screening of inhibitors of receptor-mediated endocytosis demonstrated the involvement of clathrin receptors in RrA penetration into cells. Confocal microscopy confirmed the cytoplasmic and nuclear localization of RrA in human breast cancer SKBR3 cells. Two predicted nuclear localization motifs allow RrA to penetrate into the cell nucleus and inhibit telomerase. Chromatin relaxation promoted by different agents can increase the ability of RrA to suppress the expression of telomerase main catalytic subunit. Our study demonstrated for the first time the ability of RrA to penetrate into human cancer cells and the involvement of clathrin receptors in this process.

5.
Pulse (Basel) ; 8(1-2): 21-30, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999875

RESUMO

INTRODUCTION: Commonly accepted clinical classification of arrhythmogenic right ventricular cardiomyopathy (ARVC) is still not developed. OBJECTIVE: To study the clinical forms of ARVC. METHODS: Fifty-four patients (38.7 ± 14.1 years, 42.6% men) with ARVC. Follow-up period: 21 (6-60) months. All patients underwent electrocardiography, 24 h-Holter monitoring, echocardiography, and DNA diagnostic. Magnetic resonance imaging was performed in 49 patients. RESULTS: According to the features of clinical course of ARVC, 4 clinical forms were identified. (I) Latent arrhythmic form (n = 27) - frequent premature ventricular contractions and/or nonsustained ventricular tachycardia (VT) in the absence of sustained VT and syncope; characterized by absence of fatal arrhythmic events. (II) Manifested arrhythmic form (n = 11) - sustained VT/ventricular fibrillation; the high incidence of appropriate implantation of cardioverter-defibrillator (ICD) interventions (75%) registered. (III) ARVC with progressive chronic heart failure (CHF, n = 8) as the main manifestation of the disease; incidence of appropriate ICD interventions was 50%, mortality rate due to CHF was 25%. (IV) Combination of ARVC with left ventricular noncompaction (n = 8); characterized by mutations in desmosomal or sarcomere genes, aggressive ventricular arrhythmias, appropriate ICD interventions in 100% patients. Described 4 clinical forms are stable in time, do not transform into each other, and they are genetically determined. CONCLUSIONS: The described clinical forms of ARVC are determined by a combination of genetic and environmental factors and do not transform into each other. The proposed classification could be used in clinical practice to determine the range of diagnostic and therapeutic measures and to assess the prognosis of the disease in a particular patient.

6.
Cancer Med ; 6(11): 2697-2712, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984046

RESUMO

Rhodospirillum rubrum L-asparaginase mutant E149R, V150P, F151T (RrA) down-regulates telomerase activity due to its ability to inhibit the expression of telomerase catalytic subunit hTERT. The aim of this study was to define the effect of short-term and long-term RrA exposure on proliferation of cancer Jurkat cell line and normal human CD4+ T lymphocytes. RrA could inhibit telomerase activity in dose- and time-dependent manner in both Jurkat and normal CD4+ T cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell cycle inhibition, replicative senescence, and development of apoptosis. Complete death of Jurkat cells was observed at the day 25 of RrA exposure while normal CD4+ T cells died at the day 50 due to the initial longer length of telomeres. Removal of RrA from senescent cells led to a reactivation of hTERT expression, restoration telomerase activity, re-elongation of telomeres after 48 h of cultivation, and survival of cells. These findings demonstrate that proliferation of cancer and normal telomerase-positive cells can be limited by continuous telomerase inhibition with RrA. Longer telomeres of normal CD4+ T lymphocytes make such cells more sustainable to RrA exposure that could give them an advantage during anti-telomerase therapy. These results should facilitate further investigations of RrA as a potent anti-telomerase therapeutic protein.


Assuntos
Apoptose/efeitos dos fármacos , Asparaginase/farmacologia , Proliferação de Células/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Adolescente , Adulto , Linfócitos T CD4-Positivos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Células Jurkat , Telomerase/genética , Encurtamento do Telômero/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem , beta-Galactosidase/metabolismo
7.
Eur J Cell Biol ; 96(7): 653-664, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28886883

RESUMO

Telomerase activity is regulated by alternative splicing of its catalytic subunit human Telomerase Reverse Transcriptase (hTERT) mRNA. Induction of a non-active spliced hTERT leads to inhibition of telomerase activity. However, very little is known about the mechanism of hTERT mRNA alternative splicing. The aim of this study was to determine the role of the apoptotic endonuclease EndoG in alternative splicing of hTERT and telomerase activity. A strong correlation was identified between EndoG expression levels and hTERT splice variants in human CD4+ and CD8+ T lymphocytes. Overexpression of EndoG in CD4+ T cells down-regulated the expression of the active full-length hTERT variant and up-regulated expression of the non-active spliced variant. A reduction in full-length hTERT transcripts down-regulated telomerase activity. Long-term in vitro cultivation of EndoG-overexpressing CD4+ T cells led to dramatically shortened telomeres, conversion of cells into a replicative senescence state, and activation of the BCL2/BAX-associated apoptotic pathway finally leading to cell death. These data indicated the participation of EndoG in alternative mRNA splicing of the telomerase catalytic subunit hTERT, regulation of telomerase activity and determination of cell fate.


Assuntos
Processamento Alternativo/genética , Endonucleases/genética , Telomerase/genética , Telômero/genética , Apoptose/genética , Linfócitos T CD4-Positivos/metabolismo , Domínio Catalítico/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Proteína X Associada a bcl-2/genética
8.
Biochem Biophys Res Commun ; 492(2): 282-288, 2017 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-28837806

RESUMO

Rhodospirillum rubruml-asparaginase mutant RrA E149R, V150P, F151T (RrA) was previously identified to down-regulate telomerase activity along with catalyzing the hydrolysis of l-asparagine. The aim of this study was to define the effect of prolonged RrA exposure on telomerase activity, maintenance of telomeres and proliferation of cancer cells in vitro and in vivo. RrA could inhibit telomerase activity in SCOV-3, SkBr-3 and A549 human cancer cell lines due to its ability to down-regulate the expression of telomerase catalytic subunit hTERT. Telomerase activity in treated cells did not exceeded 29.63 ± 12.3% of control cells. Continuous RrA exposure of these cells resulted in shortening of telomeres followed by cell death in vitro. Using real time PCR we showed that length of telomeres in SCOV-3 cells has been gradually decreasing from 10105 ± 2530 b.p. to 1233 ± 636 b.p. after 35 days of cultivation. RrA treatment of xenograft models in vivo showed slight inhibition of tumor growth accompanied with 49.5-53.3% of decrease in hTERT expression in the all tumors. However down-regulation of hTERT expression, inhibition of telomerase activity and the loss of telomeres was significant in response to RrA administration in xenograft models. These results should facilitate further investigations of RrA as a potent therapeutic protein.


Assuntos
Antineoplásicos/uso terapêutico , Asparaginase/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Rhodospirillum/enzimologia , Telomerase/genética , Animais , Asparaginase/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Mutação Puntual , Rhodospirillum/genética , Encurtamento do Telômero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA