Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21407, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725429

RESUMO

Messenger RNA (mRNA) delivery provides gene therapy with the potential to achieve transient therapeutic efficacy without risk of insertional mutagenesis. Amongst other applications, mRNA can be employed as a platform to deliver gene editing molecules, to achieve protein expression as an alternative to enzyme replacement therapies, and to express chimeric antigen receptors (CARs) on immune cells for the treatment of cancer. We designed a novel microfluidic device that allows for efficient mRNA delivery via volume exchange for convective transfection (VECT). In the device, cells flow through a ridged channel that enforces a series of ultra-fast and large intensity deformations able to transiently open pores and induce convective transport of mRNA into the cell. Here, we describe efficient delivery of mRNA into T cells, natural killer (NK) cells and hematopoietic stem and progenitor cells (HSPCs), three human primary cell types widely used for ex vivo gene therapy applications. Results demonstrate that the device can operate at a wide range of cell and payload concentrations and that ultra-fast compressions do not have a negative impact on T cell function, making this a novel and competitive platform for the development of ex vivo mRNA-based gene therapies and other cell products engineered with mRNA.


Assuntos
Células-Tronco Hematopoéticas/citologia , Linfócitos/metabolismo , Microfluídica , Células-Tronco/citologia , Transfecção/métodos , Antígenos CD34/biossíntese , Transporte Biológico , Sobrevivência Celular , Eletroporação , Citometria de Fluxo , Terapia Genética , Humanos , Células Matadoras Naturais/citologia , Dispositivos Lab-On-A-Chip , Engenharia de Proteínas , RNA Mensageiro/metabolismo , Linfócitos T/citologia
2.
Sci Rep ; 11(1): 18032, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504124

RESUMO

The isolation of a patient's metastatic cancer cells is the first, enabling step toward treatment of that patient using modern personalized medicine techniques. Whereas traditional standard-of-care approaches select treatments for cancer patients based on the histological classification of cancerous tissue at the time of diagnosis, personalized medicine techniques leverage molecular and functional analysis of a patient's own cancer cells to select treatments with the highest likelihood of being effective. Unfortunately, the pure populations of cancer cells required for these analyses can be difficult to acquire, given that metastatic cancer cells typically reside in fluid containing many different cell populations. Detection and analyses of cancer cells therefore require separation from these contaminating cells. Conventional cell sorting approaches such as Fluorescence Activated Cell Sorting or Magnetic Activated Cell Sorting rely on the presence of distinct surface markers on cells of interest which may not be known nor exist for cancer applications. In this work, we present a microfluidic platform capable of label-free enrichment of tumor cells from the ascites fluid of ovarian cancer patients. This approach sorts cells based on differences in biomechanical properties, and therefore does not require any labeling or other pre-sort interference with the cells. The method is also useful in the cases when specific surface markers do not exist for cells of interest. In model ovarian cancer cell lines, the method was used to separate invasive subtypes from less invasive subtypes with an enrichment of ~ sixfold. In ascites specimens from ovarian cancer patients, we found the enrichment protocol resulted in an improved purity of P53 mutant cells indicative of the presence of ovarian cancer cells. We believe that this technology could enable the application of personalized medicine based on analysis of liquid biopsy patient specimens, such as ascites from ovarian cancer patients, for quick evaluation of metastatic disease progression and determination of patient-specific treatment.


Assuntos
Ascite/diagnóstico , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Neoplasias Ovarianas/diagnóstico , Proteína Supressora de Tumor p53/genética , Ascite/genética , Ascite/metabolismo , Ascite/patologia , Líquido Ascítico/metabolismo , Líquido Ascítico/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fenômenos Biomecânicos , Separação Celular/instrumentação , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Modelos Biológicos , Reação em Cadeia da Polimerase Multiplex , Mutação , Invasividade Neoplásica , Células Neoplásicas Circulantes/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Medicina de Precisão , Proteína Supressora de Tumor p53/metabolismo
3.
APL Bioeng ; 4(3): 036101, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32637856

RESUMO

To improve the survival rate of cancer patients, new diagnosis strategies are necessary to detect lower levels of cancer cells before and after treatment regimens. The scarcity of diseased cells, particularly in residual disease after treatment, demands highly sensitive detection approaches or the ability to enrich the diseased cells in relation to normal cells. We report a label-free microfluidic approach to enrich leukemia cells from healthy cells using inherent differences in cell biophysical properties. The microfluidic device consists of a channel with an array of diagonal ridges that recurrently compress and translate flowing cells in proportion to cell stiffness. Using devices optimized for acute T cell leukemia model Jurkat, the stiffer white blood cells were translated orthogonally to the channel length, while softer leukemia cells followed hydrodynamic flow. The device enriched Jurkat leukemia cells from white blood cells with an enrichment factor of over 760. The sensitivity, specificity, and accuracy of the device were found to be > 0.8 . The values of sensitivity and specificity could be adjusted by selecting one or multiple outlets for analysis. We demonstrate that low levels of Jurkat leukemia cells (1 in 10 4 white blood cells) could be more quickly detected using flow cytometry by using the stiffness sorting pre-enrichment. In a second mode of operation, the device was implemented to sort resistive leukemia cells from both drug-sensitive leukemia cells and normal white blood cells. Therefore, microfluidic biomechanical sorting can be a useful tool to enrich leukemia cells that may improve downstream analyses.

4.
Cell Death Dis ; 9(2): 239, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445159

RESUMO

Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.


Assuntos
Antineoplásicos/farmacologia , Separação Celular/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Dispositivos Lab-On-A-Chip , Proteínas de Neoplasias/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Fenômenos Biomecânicos , Ácidos Cafeicos/farmacologia , Separação Celular/instrumentação , Sobrevivência Celular/efeitos dos fármacos , Claritromicina/farmacologia , Daunorrubicina/farmacologia , Combinação de Medicamentos , Módulo de Elasticidade , Fulvestranto/farmacologia , Redes Reguladoras de Genes , Humanos , Células Jurkat , Células K562 , Cetoconazol/farmacologia , Proteínas de Neoplasias/metabolismo
5.
Sci Rep ; 7(1): 1997, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515450

RESUMO

The enrichment of viable cells is an essential step to obtain effective products for cell therapy. While procedures exist to characterize the viability of cells, most methods to exclude nonviable cells require the use of density gradient centrifugation or antibody-based cell sorting with molecular labels of cell viability. We report a label-free microfluidic technique to separate live and dead cells that exploits differences in cellular stiffness. The device uses a channel with repeated ridges that are diagonal with respect to the direction of cell flow. Stiff nonviable cells directed through the channel are compressed and translated orthogonally to the channel length, while soft live cells follow hydrodynamic flow. As a proof of concept, Jurkat cells are enriched to high purity of viable cells by a factor of 185-fold. Cell stiffness was validated as a sorting parameter as nonviable cells were substantially stiffer than live cells. To highlight the utility for hematopoietic stem cell transplantation, frozen samples of cord blood were thawed and the purity of viable nucleated cells was increased from 65% to over 94% with a recovery of 73% of the viable cells. Thus, the microfluidic stiffness sorting can simply and efficiently obtain highly pure populations of viable cells.


Assuntos
Separação Celular , Sobrevivência Celular , Técnicas Analíticas Microfluídicas , Microfluídica , Separação Celular/métodos , Sangue Fetal/citologia , Humanos , Células Jurkat , Microfluídica/métodos , Razão de Chances , Curva ROC
6.
Microfluid Nanofluidics ; 19(4): 987-993, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28316561

RESUMO

The biomechanical properties of populations of diseased cells are shown to have differences from healthy populations of cells, yet the overlap of these biomechanical properties can limit their use in disease cell enrichment and detection. We report a new microfluidic cell enrichment technology that continuously fractionates cells through differences in biomechanical properties, resulting in highly pure cellular subpopulations. Cell fractionation is achieved in a microfluidic channel with an array of diagonal ridges that are designed to segregate biomechanically distinct cells to different locations in the channel. Due to the imposition of elastic and viscous forces during cellular compression, which are a function of cell biomechanical properties including size and viscoelasticity, larger, stiffer and less viscos cells migrate parallel to the diagonal ridges and exhibit positive lateral displacement. On the other hand, smaller, softer and more viscous cells migrate perpendicular to the diagonal ridges due to circulatory flow induced by the ridges and result in negative lateral displacement. Multiple outlets are then utilized to collect cells with finer gradation of differences in cell biomechanical properties. The result is that cell fractionation dramatically improves cell separation efficiency compared to binary outputs and enables the measurement of subtle biomechanical differences within a single cell type. As a proof-of-concept demonstration, we mix two different leukemia cell lines (K562 and HL60) and utilize cell fractionation to achieve over 45-fold enhancement of cell populations, with high purity cellular enrichment (90% to 99%) of each cell line. In addition, we demonstrate cell fractionation of a single cell type (K562 cells) into subpopulations and characterize the variations of biomechanical properties of the separated cells with atomic force microscopy. These results will be beneficial to obtaining label-free separation of cellular mixtures, or to better investigate the origins of biomechanical differences in a single cell type.

7.
Lab Chip ; 15(2): 532-40, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25411722

RESUMO

We report a microfluidic approach to separate and enrich a mixture of two cell types based on differences in cell viscoelastic behavior during repeated compressions and relaxation events. As proof of concept, we demonstrate that variations in viscoelasticity affect the flow trajectory of one type of leukemia cell line (K562) in relation to another leukemia cell line (HL60) as well as healthy leukocytes. These differences in cell trajectory can be utilized to enrich and sort K562 cells from HL60 cells and leukocytes. The microfluidic device utilizes periodic, diagonal ridges to compress and translate the cells laterally perpendicular to channel axis. The ridge spacing is tuned to allow relaxation of the K562 cells but not the HL60 cells or leukocytes. Therefore, the periodic compression laterally translates weakly viscous cells, while highly viscous cells respond to hydrodynamic circulation forces generated by the slanted ridges. As a result, cell sorting has strong dependency on cell viscosity. We use atomic force microscopy and high-speed optical microscopy to measure cell stiffness, cell relaxation rate constant, and cell size for all cell types. With properly designed microfluidic channels, we can optimize the enrichment of K562 cells from HL60 and leukocytes.


Assuntos
Separação Celular/métodos , Leucócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Polaridade Celular , Separação Celular/instrumentação , Forma Celular , Tamanho Celular , Módulo de Elasticidade , Citometria de Fluxo , Células HL-60 , Humanos , Células K562 , Microscopia de Força Atômica
8.
PLoS One ; 8(10): e75901, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146787

RESUMO

Abnormal cell mechanical stiffness can point to the development of various diseases including cancers and infections. We report a new microfluidic technique for continuous cell separation utilizing variation in cell stiffness. We use a microfluidic channel decorated by periodic diagonal ridges that compress the flowing cells in rapid succession. The compression in combination with secondary flows in the ridged microfluidic channel translates each cell perpendicular to the channel axis in proportion to its stiffness. We demonstrate the physical principle of the cell sorting mechanism and show that our microfluidic approach can be effectively used to separate a variety of cell types which are similar in size but of different stiffnesses, spanning a range from 210 Pa to 23 kPa. Atomic force microscopy is used to directly measure the stiffness of the separated cells and we found that the trajectories in the microchannel correlated to stiffness. We have demonstrated that the current processing throughput is 250 cells per second. This microfluidic separation technique opens new ways for conducting rapid and low-cost cell analysis and disease diagnostics through biophysical markers.


Assuntos
Separação Celular/métodos , Células Epiteliais/citologia , Eritrócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Linhagem Celular Tumoral , Tamanho Celular , Elasticidade/fisiologia , Células Epiteliais/fisiologia , Desenho de Equipamento , Eritrócitos/fisiologia , Dureza/fisiologia , Humanos , Células Jurkat , Células K562 , Microscopia de Força Atômica
9.
Chemistry ; 10(17): 4315-23, 2004 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-15352114

RESUMO

A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA