Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 3756, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434897

RESUMO

Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Proteínas Repressoras/metabolismo , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas WT1
2.
Biol Psychiatry ; 86(6): 474-482, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31101319

RESUMO

BACKGROUND: Clinical studies suggest that heightened peripheral inflammation contributes to the pathogenesis of stress-related disorders, including major depressive disorder. However, the molecular mechanisms within peripheral immune cells that mediate enhanced stress vulnerability are not well known. Because microRNAs (miRs) are important regulators of immune response, we sought to examine their role in mediating inflammatory and behavioral responses to repeated social defeat stress (RSDS), a mouse model of stress vulnerability that produces susceptible and resilient phenotypes. METHODS: We isolated Ly6chigh monocytes via fluorescence-activated cell sorting in the blood of susceptible and resilient mice following RSDS and profiled miR expression via quantitative real-time polymerase chain reaction. Bone marrow chimeric mice were generated to confirm a causal role of the miR-106b∼25 cluster in bone marrow-derived leukocytes in mediating stress resilience versus susceptibility. RESULTS: We found that RSDS produces an increase in circulating Ly6chigh inflammatory monocytes in both susceptible and resilient mice. We next investigated whether intrinsic leukocyte posttranscriptional mechanisms contribute to individual differences in stress response and the resilient phenotype. Of the miRs profiled in our panel, eight were significantly regulated by RSDS within Ly6chigh monocytes, including miR-25-3p, a member of the miR-106b∼25 cluster. Selective knockout of the miR-106b∼25 cluster in peripheral leukocytes promoted behavioral resilience to RSDS. CONCLUSIONS: Our results identify the miR-106b∼25 cluster as a key regulator of stress-induced inflammation and depression that may represent a novel therapeutic target for drug development.


Assuntos
Comportamento Animal , Depressão/metabolismo , MicroRNAs/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Transplante de Medula Óssea , Depressão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Monócitos/metabolismo , Estresse Psicológico/patologia , Quimeras de Transplante
3.
J Neurosci ; 38(26): 5913-5924, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29891732

RESUMO

A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc), a key reward region, in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1)-expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward.SIGNIFICANCE STATEMENT Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for affected individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses.


Assuntos
Agressão/fisiologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Recompensa
4.
Nat Neurosci ; 20(12): 1752-1760, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184215

RESUMO

Studies suggest that heightened peripheral inflammation contributes to the pathogenesis of major depressive disorder. We investigated the effect of chronic social defeat stress, a mouse model of depression, on blood-brain barrier (BBB) permeability and infiltration of peripheral immune signals. We found reduced expression of the endothelial cell tight junction protein claudin-5 (Cldn5) and abnormal blood vessel morphology in nucleus accumbens (NAc) of stress-susceptible but not resilient mice. CLDN5 expression was also decreased in NAc of depressed patients. Cldn5 downregulation was sufficient to induce depression-like behaviors following subthreshold social stress whereas chronic antidepressant treatment rescued Cldn5 loss and promoted resilience. Reduced BBB integrity in NAc of stress-susceptible or mice injected with adeno-associated virus expressing shRNA against Cldn5 caused infiltration of the peripheral cytokine interleukin-6 (IL-6) into brain parenchyma and subsequent expression of depression-like behaviors. These findings suggest that chronic social stress alters BBB integrity through loss of tight junction protein Cldn5, promoting peripheral IL-6 passage across the BBB and depression.


Assuntos
Depressão/patologia , Depressão/psicologia , Meio Social , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Ansiedade/psicologia , Comportamento Animal , Barreira Hematoencefálica/patologia , Claudina-5/biossíntese , Claudina-5/genética , Comportamento Alimentar , Preferências Alimentares , Imipramina/farmacologia , Interleucina-6/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/patologia , Natação/psicologia , Proteínas de Junções Íntimas/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(45): 16136-41, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25331895

RESUMO

Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.


Assuntos
Transtornos de Ansiedade/imunologia , Comportamento Animal , Interleucina-6/imunologia , Estresse Psicológico/imunologia , Aloenxertos , Animais , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Transplante de Medula Óssea , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/patologia , Interleucina-6/genética , Camundongos , Camundongos Knockout , Estresse Psicológico/genética , Estresse Psicológico/patologia , Fatores de Tempo , Quimeras de Transplante/genética , Quimeras de Transplante/imunologia
6.
PLoS One ; 9(9): e106601, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25210784

RESUMO

Loss-of-function mutations in DJ-1 (PARK7) gene account for about 1% of all familial Parkinson's disease (PD). While its physiological function(s) are not completely clear, DJ-1 protects neurons against oxidative stress in both in vitro and in vivo models of PD. The molecular mechanism(s) through which DJ-1 alleviates oxidative stress-mediated damage remains elusive. In this study, we identified Paraoxonase-2 (PON2) as an interacting target of DJ-1. PON2 activity is elevated in response to oxidative stress and DJ-1 is crucial for this response. Importantly, we showed that PON2 deficiency hypersensitizes neurons to oxidative stress induced by MPP+ (1-methyl-4-phenylpyridinium). Conversely, over-expression of PON2 protects neurons in this death paradigm. Interestingly, PON2 effectively rescues DJ-1 deficiency-mediated hypersensitivity to oxidative stress. Taken together, our data suggest a model by which DJ-1 exerts its antioxidant activities, at least partly through regulation of PON2.


Assuntos
Antioxidantes/metabolismo , Arildialquilfosfatase/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Oncogênicas/biossíntese , Doença de Parkinson/genética , Animais , Apoptose/genética , Arildialquilfosfatase/genética , Sobrevivência Celular , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Oncogênicas/genética , Estresse Oxidativo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1
7.
J Neurosci ; 34(23): 8043-50, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24899725

RESUMO

DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neurônios/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Knockout , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurotoxinas/farmacologia , Proteínas Oncogênicas/deficiência , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Doença de Parkinson/patologia , Peroxirredoxinas , Proteína Desglicase DJ-1 , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
8.
Proc Natl Acad Sci U S A ; 107(7): 3186-91, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133695

RESUMO

Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H(2)O(2) in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Neurotoxinas/metabolismo , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Western Blotting , Fracionamento Celular , Células Cultivadas , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo , Peroxirredoxinas , Fosforilação , Proteína Desglicase DJ-1
9.
J Neurochem ; 112(2): 497-510, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19895669

RESUMO

DNA damage is a critical component of neuronal death underlying neurodegenerative diseases and injury. Neuronal death evoked by DNA damage is characterized by inappropriate activation of multiple cell cycle components. However, the mechanism regulating this activation is not fully understood. We demonstrated previously that the cell division cycle (Cdc) 25A phosphatase mediates the activation of cyclin-dependent kinases and neuronal death evoked by the DNA damaging agent camptothecin. We also showed that Cdc25A activation is blocked by constitutive checkpoint kinase 1 activity under basal conditions in neurons. Presently, we report that an additional factor is central to regulation of Cdc25A phosphatase in neuronal death. In a gene array screen, we first identified Pim-1 as a potential factor up-regulated following DNA damage. We confirmed the up-regulation of Pim-1 transcript, protein and kinase activity following DNA damage. This induction of Pim-1 is regulated by the nuclear factor kappa beta (NF-kappaB) pathway as Pim-1 expression and activity are significantly blocked by siRNA-mediated knockdown of NF-kappaB or NF-kappaB pharmacological inhibitors. Importantly, Pim-1 activity is critical for neuronal death in this paradigm and its deficiency blocks camptothecin-mediated neuronal death. It does so by activating Cdc25A with consequent activation of cyclin D1-associated kinases. Taken together, our results demonstrate that Pim-1 kinase plays a central role in DNA damage-evoked neuronal death by regulating aberrant neuronal cell cycle activation.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Camptotecina/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Transformada , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina/métodos , Dano ao DNA/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/deficiência , Proteínas Proto-Oncogênicas c-pim-1/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Estaurosporina/farmacologia , Isótopos de Enxofre/metabolismo , Fatores de Tempo , Transfecção/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Fosfatases cdc25/metabolismo
10.
Proc Natl Acad Sci U S A ; 104(47): 18748-53, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18003894

RESUMO

Recent evidence has indicated that common mechanisms play roles among multiple neurological diseases. However, the specifics of these pathways are not completely understood. Stroke is caused by the interruption of blood flow to the brain, and cumulative evidence supports the critical role of oxidative stress in the ensuing neuronal death process. DJ-1 (PARK7) has been identified as the gene linked to early-onset familial Parkinson's disease. Currently, our work also shows that DJ-1 is central to death in both in Vitro and in Vivo models of stroke. Loss of DJ-1 increases the sensitivity to excitotoxicity and ischemia, whereas expression of DJ-1 can reverse this sensitivity and indeed provide further protection. Importantly, DJ-1 expression decreases markers of oxidative stress after stroke insult in Vivo, suggesting that DJ-1 protects through alleviation of oxidative stress. Consistent with this finding, we demonstrate the essential role of the oxidation-sensitive cysteine-106 residue in the neuroprotective activity of DJ-1 after stroke. Our work provides an important example of how a gene seemingly specific for one disease, in this case Parkinson's disease, also appears to be central in other neuropathological conditions such as stroke. It also highlights the important commonalities among differing neuropathologies.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Oncogênicas/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Biomarcadores , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Modelos Biológicos , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Oxirredução , Estresse Oxidativo , Doença de Parkinson/genética , Peroxirredoxinas , Proteína Desglicase DJ-1 , Ratos , Sensibilidade e Especificidade , Acidente Vascular Cerebral/genética
11.
Neuron ; 55(1): 37-52, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17610816

RESUMO

We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. Consistent with this, p35-/- neurons show reduced oxidative stress upon MPP+ treatment. Expression of Prx2 and Prx2T89A, but not the phosphorylation mimic Prx2T89E, protects cultured and adult neurons following mitochondrial insult. Finally, downregulation of Prx2 increases oxidative stress and sensitivity to MPP+. We propose a mechanistic model by which mitochondrial toxin leads to calpain-mediated Cdk5 activation, reduced Prx2 activity, and decreased capacity to eliminate ROS. Importantly, increased Prx2 phosphorylation also occurs in nigral neurons from postmortem tissue from Parkinson's disease patients when compared to control, suggesting the relevance of this pathway in the human condition.


Assuntos
Quinase 5 Dependente de Ciclina/fisiologia , Proteínas de Homeodomínio/fisiologia , Intoxicação por MPTP/metabolismo , Doença de Parkinson Secundária/metabolismo , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Técnicas de Transferência de Genes , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/enzimologia , Neurônios/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/citologia , Substância Negra/enzimologia
12.
FASEB J ; 20(13): 2375-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17012241

RESUMO

Cyclooxygenase-2 (COX-2) has been implicated in neuronal survival and death. However, the precise regulatory mechanisms involved in COX-2 function are unclear. In the present study we found that COX-2 is induced in response to glutathione depletion-induced oxidative stress in primary cortical neurons. Two proximal specific Sp1 and Sp3 binding sites are responsible for the COX-2 promoter activity under normal as well as oxidative stress conditions through enhanced Sp1 and Sp3 DNA binding activity. Site-directed mutagenesis confirmed that -268/-267 positions serve as specific Sp1 and Sp3 recognition sites under oxidative stress. Enforced expression of Sp1 and Sp3 using HSV vectors increased the promoter activity, transcription, and protein level of COX-2 in cortical neurons. The dominant negative form of Sp1 abrogated the oxidative stress-induced promoter activity and expression of COX-2. We also demonstrated that adenovirus-mediated COX-2 gene delivery protected neurons from DNA damage induced by oxidative, genotoxic, and excitotoxic stresses and by ischemic injury. Moreover, COX-2(-/-) cortical neurons were more susceptible to DNA damage-induced cell death. These results indicate that in primary neurons Sp1 and Sp3 play an essential role in the modulation of COX-2 transcription, which mediates neuronal homeostasis and survival by preventing DNA damage in response to neuronal stress.


Assuntos
Córtex Cerebral/enzimologia , Ciclo-Oxigenase 2/genética , Dano ao DNA , Neurônios/fisiologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp2/metabolismo , Animais , Sequência de Bases , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sobrevivência Celular , Clonagem Molecular , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/deficiência , Primers do DNA , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/patologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Proc Natl Acad Sci U S A ; 102(39): 14080-5, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16166266

RESUMO

The mechanisms involving neuronal death after ischemic/hypoxic insult are complex, involving both rapid (excitotoxic) and delayed (apoptotic-like) processes. Recent evidence suggests that cell cycle regulators such as cyclin-dependent kinases are abnormally activated in neuropathological conditions, including stroke. However, the function of this activation is unclear. Here, we provide evidence that inhibition of the cell cycle regulator, Cdk4, and its activator, cyclinD1, plays critical roles in the delayed death component of ischemic/hypoxic stress by regulating the tumor suppressor retinoblastoma protein. In contrast, the excitotoxic component of ischemia/hypoxia is predominately regulated by Cdk5 and its activator p35, components of a cyclin-dependent kinase complex associated with neuronal development. Hence, our data both characterize the functional significance of the cell cycle Cdk4 and neuronal Cdk5 signals as well as define the pathways and circumstances by which they act to control ischemic/hypoxic damage.


Assuntos
Hipóxia-Isquemia Encefálica/enzimologia , Neurônios/patologia , Animais , Morte Celular , Ciclina D1/antagonistas & inibidores , Ciclina D1/genética , Ciclina D1/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/enzimologia , Fosforilação , Ratos , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/patologia
14.
Proc Natl Acad Sci U S A ; 102(14): 5215-20, 2005 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15784737

RESUMO

Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/- mice showed hypolocomotion when subjected to amphetamine challenge and increased striatal denervation and dopaminergic neuron loss induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. DJ-1-/-embryonic cortical neurons showed increased sensitivity to oxidative, but not nonoxidative, insults. Restoration of DJ-1 expression to DJ-1-/- mice or cells via adenoviral vector delivery mitigated all phenotypes. WT mice that received adenoviral delivery of DJ-1 resisted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine-induced striatal damage, and neurons overexpressing DJ-1 were protected from oxidative stress in vitro. Thus, DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.


Assuntos
Intoxicação por MPTP/metabolismo , Proteínas Oncogênicas/deficiência , Animais , Sequência de Bases , Morte Celular , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , DNA Complementar/genética , Denervação , Marcação de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Neurônios/citologia , Neurônios/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Proteína Desglicase DJ-1
15.
J Neurosci ; 24(12): 2963-73, 2004 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15044535

RESUMO

Previous studies have shown that DNA damage-evoked death of primary cortical neurons occurs in a p53 and cyclin-dependent kinase-dependent (CDK) manner. The manner by which these signals modulate death is unclear. Nuclear factor-kappaB (NF-kappaB) is a group of transcription factors that potentially interact with these pathways. Presently, we show that NF-kappaB is activated shortly after induction of DNA damage in a manner independent of the classic IkappaB kinase (IKK) activation pathway, CDKs, ATM, and p53. Acute inhibition of NF-kappaB via expression of a stable IkappaB mutant, downregulation of the p65 NF-kappaB subunit by RNA interference (RNAi), or pharmacological NF-kappaB inhibitors significantly protected against DNA damage-induced neuronal death. NF-kappaB inhibition also reduced p53 transcripts and p53 activity as measured by the p53-inducible messages, Puma and Noxa, implicating the p53 tumor suppressor in the mechanism of NF-kappaB-mediated neuronal death. Importantly, p53 expression still induces death in the presence of NF-kappaB inhibition, indicating that p53 acts downstream of NF-kappaB. Interestingly, neurons cultured from p65 or p50 NF-kappaB-deficient mice were not resistant to death and did not show diminished p53 activity, suggesting compensatory processes attributable to germline deficiencies, which allow p53 activation still to occur. In contrast to acute NF-kappaB inhibition, prolonged NF-kappaB inhibition caused neuronal death in the absence of DNA damage. These results uniquely define a signaling paradigm by which NF-kappaB serves both an acute p53-dependent pro-apoptotic function in the presence of DNA damage and an anti-apoptotic function in untreated normal neurons.


Assuntos
Dano ao DNA/fisiologia , NF-kappa B/metabolismo , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Camptotecina/farmacologia , Proteínas de Ciclo Celular , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , NF-kappa B/genética , Subunidade p50 de NF-kappa B , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Inibidores da Topoisomerase I , Fator de Transcrição RelA , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA