Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6737, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347890

RESUMO

The essential deamination of adenosine A34 to inosine at the wobble base is the individual tRNA modification with the greatest effects on mRNA decoding, empowering a single tRNA to translate three different codons. To date, many aspects of how eukaryotic deaminases specifically select their multiple substrates remain unclear. Here, using cryo-EM, we present the structure of a eukaryotic ADAT2/3 deaminase bound to a full-length tRNA, revealing that the enzyme distorts the anticodon loop, but in contrast to the bacterial enzymes, selects its substrate via sequence-independent contacts of eukaryote-acquired flexible or intrinsically unfolded motifs distal from the conserved catalytic core. A gating mechanism for substrate entry to the active site is identified. Our multi-step tRNA recognition model yields insights into how RNA editing by A34 deamination evolved, shaped the genetic code, and directly impacts the eukaryotic proteome.


Assuntos
Adenosina Desaminase , Eucariotos , Adenosina Desaminase/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Inosina/metabolismo , RNA de Transferência/metabolismo , Anticódon/genética
2.
Biochem J ; 479(4): 561-580, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35136964

RESUMO

Adenosine-to-inosine conversion at position 34 (A34-to-I) of certain tRNAs is essential for expanding their decoding capacity. This reaction is catalyzed by the adenosine deaminase acting on tRNA (ADAT) complex, which in Eukarya is formed by two subunits: ADAT2 and ADAT3. We herein identified and thoroughly characterized the ADAT molecules from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas Disease. TcADAT2 and TcADAT3 spontaneously form a catalytically active complex, as shown by expression in engineered bacteria and/or by the increased ex vivo tRNA A-to-I deamination activity of T. cruzi epimastigotes overexpressing TcADAT subunits. Importantly, enhanced TcADAT2/3 activity in transgenic parasites caused a shift in their in vivo tRNAThrAGU signature, which correlated with significant changes in the expression of the Thr-rich TcSMUG proteins. To our knowledge, this is the first evidence indicating that T. cruzi tRNA editing can be modulated in vivo, in turn post-transcriptionally changing the expression of specific genes. Our findings suggest tRNA editing/availability as a forcible step in controlling gene expression and driving codon adaptation in T. cruzi. Moreover, we unveil certain differences between parasite and mammalian host tRNA editing and processing, such as cytosine-to-uridine conversion at position 32 of tRNAThrAGU in T. cruzi, that may be exploited for the identification of novel druggable targets of intervention.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/genética , Expressão Gênica , Mamíferos , Mucinas , Processamento Pós-Transcricional do RNA , Trypanosoma cruzi/genética
3.
Mol Cell ; 81(23): 4765-4767, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861186

RESUMO

Schöller et al. (2021) discovered that METTL8, thought of as an mRNA modifier, is a tRNA-specific mitochondrial enzyme important for mitochondrial translation and function. Paradoxically, increased expression of METTL8 is associated with high respiratory rates in pancreatic cancers.


Assuntos
Mitocôndrias , tRNA Metiltransferases , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
4.
RNA ; 24(1): 56-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042505

RESUMO

Transfer RNAs acquire a variety of naturally occurring chemical modifications during their maturation; these fine-tune their structure and decoding properties in a manner critical for protein synthesis. We recently reported that in the eukaryotic parasite, Trypanosoma brucei, a methylation and deamination event are unexpectedly interconnected, whereby the tRNA adenosine deaminase (TbADAT2/3) and the 3-methylcytosine methyltransferase (TbTrm140) strictly rely on each other for activity, leading to formation of m3C and m3U at position 32 in several tRNAs. Still however, it is not clear why these two enzymes, which work independently in other systems, are strictly codependent in T. brucei Here, we show that these enzymes exhibit binding synergism, or a mutual increase in binding affinity, that is more than the sum of the parts, when added together in a reaction. Although these enzymes interact directly with each other, tRNA binding assays using enzyme variants mutated in critical binding and catalytic sites indicate that the observed binding synergy stems from contributions from tRNA-binding domains distal to their active sites. These results provide a rationale for the known interactions of these proteins, while also speaking to the modulation of substrate specificity between seemingly unrelated enzymes. This information should be of value in furthering our understanding of how tRNA modification enzymes act together to regulate gene expression at the post-transcriptional level and provide a basis for the interdependence of such activities.


Assuntos
Proteínas de Protozoários/química , RNA de Protozoário/química , RNA de Transferência/química , Proteínas de Ligação a RNA/química , Trypanosoma brucei brucei/enzimologia , Cinética , Ligação Proteica , Proteínas de Protozoários/fisiologia , Edição de RNA , Proteínas de Ligação a RNA/fisiologia , Termodinâmica
5.
Nucleic Acids Res ; 45(4): 2124-2136, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27913733

RESUMO

Transfer RNA modifications play pivotal roles in protein synthesis. N6-threonylcarbamoyladenosine (t6A) and its derivatives are modifications found at position 37, 3΄-adjacent to the anticodon, in tRNAs responsible for ANN codons. These modifications are universally conserved in all domains of life. t6A and its derivatives have pleiotropic functions in protein synthesis including aminoacylation, decoding and translocation. We previously discovered a cyclic form of t6A (ct6A) as a chemically labile derivative of t6A in tRNAs from bacteria, fungi, plants and protists. Here, we report 2-methylthio cyclic t6A (ms2ct6A), a novel derivative of ct6A found in tRNAs from Bacillus subtilis, plants and Trypanosoma brucei. In B. subtilis and T. brucei, ms2ct6A disappeared and remained to be ms2t6A and ct6A by depletion of tcdA and mtaB homologs, respectively, demonstrating that TcdA and MtaB are responsible for biogenesis of ms2ct6A.


Assuntos
Adenosina/análogos & derivados , RNA de Transferência/química , RNA de Transferência/metabolismo , Treonina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Fenótipo , RNA de Plantas/química , RNA de Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Treonina/química , Treonina/metabolismo
6.
Wiley Interdiscip Rev RNA ; 6(3): 337-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755220

RESUMO

All organisms encode transfer RNAs (tRNAs) that are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends; some tRNAs also contain introns, which are removed by splicing. Despite commonality in what the ultimate goal is (i.e., producing a mature tRNA), mechanistically, tRNA splicing differs between Bacteria and Archaea or Eukarya. The number and position of tRNA introns varies between organisms and even between different tRNAs within the same organism, suggesting a degree of plasticity in both the evolution and persistence of modern tRNA splicing systems. Here we will review recent findings that not only highlight nuances in splicing pathways but also provide potential reasons for the maintenance of introns in tRNA. Recently, connections between defects in the components of the tRNA splicing machinery and medically relevant phenotypes in humans have been reported. These differences will be discussed in terms of the importance of splicing for tRNA function and in a broader context on how tRNA splicing defects can often have unpredictable consequences.


Assuntos
Modelos Genéticos , Splicing de RNA , RNA de Transferência/química , Animais , Archaea/genética , Bactérias/genética , Endonucleases/fisiologia , Íntrons/fisiologia , Fosfotransferases/fisiologia , RNA de Transferência/metabolismo , RNA de Transferência/fisiologia , Vertebrados/genética
7.
Mol Cell ; 52(2): 184-92, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095278

RESUMO

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.


Assuntos
Íntrons/genética , Edição de RNA , Splicing de RNA , RNA de Transferência de Tirosina/genética , Trypanosoma brucei brucei/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Endorribonucleases/genética , Endorribonucleases/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA de Transferência de Tirosina/química , RNA de Transferência de Tirosina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/metabolismo
8.
RNA ; 17(7): 1296-306, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602302

RESUMO

Adenosine to inosine editing at the wobble position allows decoding of multiple codons by a single tRNA. This reaction is catalyzed by adenosine deaminases acting on tRNA (ADATs) and is essential for viability. In bacteria, the anticodon-specific enzyme is a homodimer that recognizes a single tRNA substrate (tRNA(Arg)(ACG)) and can efficiently deaminate short anticodon stem-loop mimics of this tRNA in vitro. The eukaryal enzyme is composed of two nonidentical subunits, ADAT2 and ADAT3, which upon heterodimerization, recognize seven to eight different tRNAs as substrates, depending on the organism, and require a full-length tRNA for activity. Although crystallographic data have provided clues to why the bacterial deaminase can utilize short substrates, residues that provide substrate binding and recognition with the eukaryotic enzymes are not currently known. In the present study, we have used a combination of mutagenesis, binding studies, and kinetic analysis to explore the contribution of individual residues in Trypanosoma brucei ADAT2 (TbADAT2) to tRNA recognition. We show that deletion of the last 10 amino acids at the C terminus of TbADAT2 abolishes tRNA binding. In addition, single alanine replacements of a string of positively charged amino acids (KRKRK) lead to binding defects that correlate with losses in enzyme activity. This region, which we have termed the KR-domain, provides a first glance at key residues involved in tRNA binding by eukaryotic tRNA editing deaminases.


Assuntos
Adenosina Desaminase/química , Adenosina Desaminase/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Edição de RNA , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Adenosina Desaminase/genética , Sequência de Aminoácidos , Ativação Enzimática/genética , Cinética , Dados de Sequência Molecular , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/genética , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Edição de RNA/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/metabolismo , Estudos de Validação como Assunto
9.
J Biol Chem ; 286(23): 20366-74, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21507956

RESUMO

Editing of adenosine (A) to inosine (I) at the first anticodon position in tRNA is catalyzed by adenosine deaminases acting on tRNA (ADATs). This essential reaction in bacteria and eukarya permits a single tRNA to decode multiple codons. Bacterial ADATa is a homodimer with two bound essential Zn(2+). The ADATa crystal structure revealed residues important for substrate binding and catalysis; however, such high resolution structural information is not available for eukaryotic tRNA deaminases. Despite significant sequence similarity among deaminases, we continue to uncover unexpected functional differences between Trypanosoma brucei ADAT2/3 (TbADAT2/3) and its bacterial counterpart. Previously, we demonstrated that TbADAT2/3 is unique in catalyzing two different deamination reactions. Here we show by kinetic analyses and inductively coupled plasma emission spectrometry that wild type TbADAT2/3 coordinates two Zn(2+) per heterodimer, but unlike any other tRNA deaminase, mutation of one of the key Zn(2+)-coordinating cysteines in TbADAT2 yields a functional enzyme with a single-bound zinc. These data suggest that, at least, TbADAT3 may play a role in catalysis via direct coordination of the catalytic Zn(2+). These observations raise the possibility of an unusual Zn(2+) coordination interface with important implications for the function and evolution of editing deaminases.


Assuntos
Adenosina Desaminase/metabolismo , Proteínas de Protozoários/metabolismo , Edição de RNA/fisiologia , RNA de Protozoário/biossíntese , RNA de Transferência/biossíntese , Trypanosoma brucei brucei/enzimologia , Zinco/metabolismo , Adenosina Desaminase/genética , Cátions Bivalentes/metabolismo , Proteínas de Protozoários/genética , RNA de Protozoário/genética , RNA de Transferência/genética , Proteínas de Ligação a RNA , Trypanosoma brucei brucei/genética
10.
Trends Parasitol ; 27(6): 235-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21419700

RESUMO

Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/metabolismo , Anticódon/metabolismo , Vias Biossintéticas , Núcleo Celular/genética , Códon/genética , Códon/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , RNA/genética , RNA/metabolismo , Edição de RNA , RNA Mitocondrial , Trypanosoma brucei brucei/genética
11.
Mol Biochem Parasitol ; 176(2): 116-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195112

RESUMO

Trypanosoma brucei brucei has two distinct developmental stages, the procyclic stage in the insect and the bloodstream stage in the mammalian host. The significance of each developmental stage is punctuated by specific changes in metabolism. In the insect, T. b. brucei is strictly dependent on mitochondrial function and thus respiration to generate the bulk of its ATP, whereas in the mammalian host it relies heavily on glycolysis. These observations have raised questions about the importance of mitochondrial function in the bloodstream stage. Peculiarly, akinetoplastic strains of Trypanosoma brucei evansi that lack mitochondrial DNA do exist in the wild and are developmentally locked in the glycolysis-dependent bloodstream stage. Using RNAi we show that two mitochondrion-imported proteins, mitochondrial RNA polymerase and guide RNA associated protein 1, are still imported into the nucleic acids-lacking organelle of T. b. evansi, making the need for these proteins futile. We also show that, like in the T. b. brucei procyclic stage, the mitochondria of both bloodstream stage of T. b. brucei and T. b. evansi import various tRNAs, including those that undergo thiolation. However, we were unable to detect mitochondrial thiolation in the akinetoplastic organelle. Taken together, these data suggest a lack of connection between nuclear and mitochondrial communication in strains of T. b. evansi that lost mitochondrial genome and that do not required an insect vector for survival.


Assuntos
Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas/metabolismo , Trypanosoma/fisiologia , Trifosfato de Adenosina/metabolismo , Comunicação Celular , Núcleo Celular/genética , DNA de Cinetoplasto/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Glicólise/fisiologia , Mitocôndrias/genética , Organismos Geneticamente Modificados , Fosforilação Oxidativa , Transporte Proteico , Proteínas/genética , Interferência de RNA , Transporte de RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Tripanossomíase/parasitologia
12.
J Biol Chem ; 285(29): 22394-402, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20442400

RESUMO

Fe/S clusters are part of the active site of many enzymes and are essential for cell viability. In eukaryotes the cysteine desulfurase Nfs (IscS) donates the sulfur during Fe/S cluster assembly and was thought sufficient for this reaction. Moreover, Nfs is indispensable for tRNA thiolation, a modification generally required for tRNA function and protein synthesis. Recently, Isd11 was discovered as an integral part of the Nfs activity at an early step of Fe/S cluster assembly. Here we show, using a combination of genetic, molecular, and biochemical approaches, that Isd11, in line with its strong association with Nfs, is localized in the mitochondrion of T. brucei. In addition to its involvement in Fe/S assembly, Isd11 also partakes in both cytoplasmic and mitochondrial tRNA thiolation, whereas Mtu1, another protein proposed to collaborate with Nfs in tRNA thiolation, is required for this process solely within the mitochondrion. Taken together these data place Isd11 at the center of these sulfur transactions and raises the possibility of a connection between Fe/S metabolism and protein synthesis, helping integrate two seemingly unrelated pathways.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Protozoário/metabolismo , RNA de Transferência/metabolismo , Compostos de Sulfidrila/metabolismo , Trypanosoma brucei brucei/metabolismo , Aconitato Hidratase/metabolismo , Citosol/metabolismo , Fumarato Hidratase/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fenótipo , Estabilidade Proteica , Interferência de RNA , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento
13.
J Biol Chem ; 284(36): 23947-53, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19574216

RESUMO

Kinetoplastids encode a single nuclear tryptophanyl tRNA that contains a CCA anticodon able to decode the UGG codons used in cytoplasmic protein synthesis but cannot decode the mitochondrial UGA codons. Following mitochondrial import, this problem is circumvented in Trypanosoma brucei by specifically editing the tRNA(Trp) anticodon to UCA, which can now decode the predominant mitochondrial UGA tryptophan codons. This tRNA also undergoes an unusual thiolation at position 33 of the anticodon loop, the only known modification at U33 in any tRNA. In other organisms, tRNA thiolation is mediated by the cysteine desulfurase, Nfs1 (IscS). However, T. brucei encodes two Nfs homologues, one cytoplasmic and the other mitochondrial. We show by a combination of RNA interference and Northern and Western analyses that the mitochondria-targeted TbNfs, and not TbNfs-like protein, is essential for thiolation of both cytosolic and mitochondrial tRNAs. Given the exclusive mitochondrial localization of TbNfs, how it mediates thiolation in the cytoplasm remains unclear. Furthermore, thiolation specifically affects thiolated tRNA stability in the cytoplasm but more surprisingly acts as a negative determinant for the essential C to U editing in T. brucei. This provides a first line of evidence for mitochondrial C to U editing regulation in this system.


Assuntos
Edição de RNA/fisiologia , Estabilidade de RNA/fisiologia , RNA de Protozoário/metabolismo , RNA de Transferência de Triptofano/metabolismo , RNA/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA/genética , RNA Mitocondrial , RNA de Protozoário/genética , RNA de Transferência de Triptofano/genética , Trypanosoma brucei brucei/genética
14.
RNA ; 15(7): 1398-406, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19465685

RESUMO

Due to a complete lack of the tRNA genes in the mitochondrial genome of Trypanosoma brucei, all tRNAs needed for mitochondrial translation have to be imported into the organelle from the cytosol. A previous study showed that the modified nucleotide s(2)U could act as a negative determinant for mitochondrial tRNA import in another kinetoplastid, Leishmania tarentolae. We have investigated whether the same type of cytosolic control for tRNA retention exists in T. brucei. Based on Northern analysis with subcellular RNA fractions and in vitro import assays, we demonstrate that silencing of the cysteine desulfurase, TbNfs (TbIscS), the key enzyme in tRNA thiolation (s(2)U) and Fe-S cluster formation in vivo, has no effect on tRNA partitioning. This observation is especially surprising in light of a recent report suggesting that in L. tropica the Rieske Fe-S protein is an essential component of the RNA import complex (RIC). In line with the above observation, we also show that down-regulation of the Rieske protein by RNA interference, similar to the TbNfs knockdowns, has no effect on import. The data presented here supports the view that in T. brucei: (1) s(2)U is not a negative determinant for tRNA import; (2) the Rieske protein is not an essential component of the import machinery, and (3) since the Rieske protein is essential for respiration and maintenance of inner mitochondrial membrane potential, neither process plays a critical role in tRNA import. We therefore suggest that the T. brucei import machinery differs substantially from what has been described in Leishmania.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , RNA de Protozoário/metabolismo , RNA de Transferência/metabolismo , Enxofre/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Northern Blotting , Liases de Carbono-Enxofre/antagonistas & inibidores , Liases de Carbono-Enxofre/genética , Citosol/metabolismo , Immunoblotting , Mitocôndrias/genética , RNA de Protozoário/genética , RNA Interferente Pequeno/farmacologia , RNA de Transferência/genética , Frações Subcelulares , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento
15.
Nucleic Acids Res ; 36(21): 6848-58, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18957443

RESUMO

Eukaryotic RNAs typically contain 5' cap structures that have been primarily studied in yeast and metazoa. The only known RNA cap structure in unicellular protists is the unusual Cap4 on Trypanosoma brucei mRNAs. We have found that T. vaginalis mRNAs are protected by a 5' cap structure, however, contrary to that typical for eukaryotes, T. vaginalis spliceosomal snRNAs lack a cap and may contain 5' monophophates. The distinctive 2,2,7-trimethylguanosine (TMG) cap structure usually found on snRNAs and snoRNAs is produced by hypermethylation of an m(7)G cap catalyzed by the enzyme trimethylguanosine synthase (Tgs). Here, we biochemically characterize the single T. vaginalis Tgs (TvTgs) encoded in its genome and demonstrate that TvTgs exhibits substrate specificity and amino acid requirements typical of an RNA cap-specific, m(7)G-dependent N2 methyltransferase. However, recombinant TvTgs is capable of catalysing only a single round of N2 methylation forming a 2,7-dimethylguanosine cap (DMG) as observed previously for Giardia lamblia. In contrast, recombinant Entamoeba histolytica and Trypanosoma brucei Tgs are capable of catalysing the formation of a TMG cap. These data suggest the presence of RNAs with a distinctive 5' DMG cap in Trichomonas and Giardia lineages that are absent in other protist lineages.


Assuntos
Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Análogos de Capuz de RNA/metabolismo , Trichomonas vaginalis/enzimologia , Animais , Giardia lamblia/enzimologia , Nucleotídeos de Guanina/metabolismo , Metilação , Metiltransferases/química , Modelos Moleculares , Proteínas de Protozoários/química , Análogos de Capuz de RNA/química , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 105(27): 9186-91, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18587046

RESUMO

Mitochondrial genomes generally encode a minimal set of tRNAs necessary for protein synthesis. However, a number of eukaryotes import tRNAs from the cytoplasm into their mitochondria. For instance, Saccharomyces cerevisiae imports cytoplasmic tRNA(Gln) into the mitochondrion without any added protein factors. Here, we examine the existence of a similar active tRNA import system in mammalian mitochondria. We have used subcellular RNA fractions from rat liver and human cells to perform RT-PCR with oligonucleotide primers specific for nucleus-encoded tRNA(CUG)(Gln) and tRNA(UUG)(Gln) species, and we show that these tRNAs are present in rat and human mitochondria in vivo. Import of in vitro transcribed tRNAs, but not of heterologous RNAs, into isolated mitochondria also demonstrates that this process is tRNA-specific and does not require the addition of cytosolic factors. Although this in vitro system requires ATP, it is resistant to inhibitors of the mitochondrial electrochemical gradient, a key component of protein import. tRNA(Gln) import into mammalian mitochondria proceeds by a mechanism distinct from protein import. We also show that both tRNA(Gln) species and a bacterial pre-tRNA(Asp) can be imported in vitro into mitochondria isolated from myoclonic epilepsy with ragged-red fiber cells if provided with sufficient ATP (2 mM). This work suggests that tRNA import is more widespread than previously thought and may be a universal trait of mitochondria. Mutations in mitochondrial tRNA genes have been associated with human disease; the tRNA import system described here could possibly be exploited for the manipulation of defective mitochondria.


Assuntos
Mamíferos/metabolismo , Mitocôndrias/metabolismo , Transporte de RNA , RNA de Transferência de Glutamina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Sequência de Bases , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células HeLa , Humanos , Síndrome MERRF/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/genética , Ratos , Solubilidade/efeitos dos fármacos
17.
Nucleic Acids Res ; 35(20): 6740-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17916576

RESUMO

In all organisms, precursor tRNAs are processed into mature functional units by post-transcriptional changes. These involve 5' and 3' end trimming as well as the addition of a significant number of chemical modifications, including RNA editing. The only known example of non-organellar C to U editing of tRNAs occurs in trypanosomatids. In this system, editing at position 32 of the anticodon loop of tRNA(Thr)(AGU) stimulates, but is not required for, the subsequent formation of inosine at position 34. In the present work, we expand the number of C to U edited tRNAs to include all the threonyl tRNA isoacceptors. Notably, the absence of a naturally encoded adenosine, at position 34, in two of these isoacceptors demonstrates that A to I is not required for C to U editing. We also show that C to U editing is a nuclear event while A to I is cytoplasmic, where C to U editing at position 32 occurs in the precursor tRNA prior to 5' leader removal. Our data supports the view that C to U editing is more widespread than previously thought and is part of a stepwise process in the maturation of tRNAs in these organisms.


Assuntos
Edição de RNA , Processamento Pós-Transcricional do RNA , Aminoacil-RNA de Transferência/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Animais , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética
18.
Proc Natl Acad Sci U S A ; 104(39): 15299-304, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17878308

RESUMO

Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions. We tested the impact of hmt-tRNA(Phe) mutations on aminoacylation, structure, and translation elongation-factor binding. The majority of the mutants were pleiotropic, exhibiting defects in aminoacylation, global structure, and elongation-factor binding. One notable exception was the G34A anticodon mutation of hmt-tRNA(Phe) (mitochondrial DNA mutation G611A), which is associated with MERRF (myoclonic epilepsy with ragged red fibers). In vitro, the G34A mutation decreases aminoacylation activity by 100-fold, but does not affect global folding or recognition by elongation factor. Furthermore, G34A hmt-tRNA(Phe) does not undergo adenosine-to-inosine (A-to-I) editing, ruling out miscoding as a possible mechanism for mitochondrial malfunction. To improve the aminoacylation state of the mutant tRNA, we modified the tRNA binding domain of the nucleus-encoded human mitochondrial phenylalanyl-tRNA synthetase, which aminoacylates hmt-tRNA(Phe) with cognate phenylalanine. This variant enzyme displayed significantly improved aminoacylation efficiency for the G34A mutant, suggesting a general strategy to treat certain classes of mitochondrial diseases by modification of the corresponding nuclear gene.


Assuntos
Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/genética , Síndrome MERRF/complicações , Síndrome MERRF/genética , RNA de Transferência de Fenilalanina/genética , RNA/química , Anticódon , Sequência de Bases , Humanos , Cinética , Mitocôndrias/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/metabolismo , Fenilalanina/química , RNA Mitocondrial , RNA de Transferência de Fenilalanina/química
19.
Mem. Inst. Oswaldo Cruz ; 102(6): 757-762, Sept. 2007. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-463485

RESUMO

The kinetoplast genetic code deviates from the universal code in that 90 percent of mitochondrial tryptophans are specified by UGA instead of UGG codons. A single nucleus-encoded tRNA Trp(CCA) is used by both nuclear and mitochondria genes, since all kinetoplast tRNAs are imported into the mitochondria from the cytoplasm. To allow decoding of the mitochondrial UGA codons as tryptophan, the tRNA Trp(CCA) anticodon is changed to UCA by an editing event. Two tryptophanyl tRNA synthetases (TrpRSs) have been identified in Trypanosoma brucei: TbTrpRS1 and TbTrpRS2 which localize to the cytoplasm and mitochondria respectively. We used inducible RNA interference (RNAi) to assess the role of TbTrpRSs. Our data validates previous observations of TrpRS as potential drug design targets and investigates the RNAi effect on the mitochondria of the parasite.


Assuntos
Animais , Interferência de RNA , RNA de Protozoário/metabolismo , RNA de Transferência/metabolismo , Trypanosoma brucei brucei/enzimologia , Triptofano-tRNA Ligase/metabolismo , Expressão Gênica , RNA de Protozoário/genética , RNA de Transferência/genética , Fatores de Tempo , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Triptofano-tRNA Ligase/genética
20.
Proc Natl Acad Sci U S A ; 104(19): 7821-6, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17483465

RESUMO

Adenosine-to-inosine editing in the anticodon of tRNAs is essential for viability. Enzymes mediating tRNA adenosine deamination in bacteria and yeast contain cytidine deaminase-conserved motifs, suggesting an evolutionary link between the two reactions. In trypanosomatids, tRNAs undergo both cytidine-to-uridine and adenosine-to-inosine editing, but the relationship between the two reactions is unclear. Here we show that down-regulation of the Trypanosoma brucei tRNA-editing enzyme by RNAi leads to a reduction in both C-to-U and A-to-I editing of tRNA in vivo. Surprisingly, in vitro, this enzyme can mediate A-to-I editing of tRNA and C-to-U deamination of ssDNA but not both in either substrate. The ability to use both DNA and RNA provides a model for a multispecificity editing enzyme. Notably, the ability of a single enzyme to perform two different deamination reactions also suggests that this enzyme still maintains specificities that would have been found in the ancestor deaminase, providing a first line of evidence for the evolution of editing deaminases.


Assuntos
Adenosina Desaminase/fisiologia , Citidina Desaminase/fisiologia , Edição de RNA , Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Citidina/metabolismo , Desaminação , Inosina/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA