Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(24): 35038-35054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720126

RESUMO

In the present study, Brassica napus, a food plant, was grown for phytoextraction of selected heavy metals (HMs) from marble industry wastewater (WW) under oxalic acid (OA) amendment. The hydroponic experiment was performed under different combination of WW with OA in complete randomized design. Photosynthetic pigments and growth reduction were observed in plants treated with WW alone amendments. The combination of OA in combination with WW significantly enhanced the growth of plants along with antioxidant enzyme activities compared with WW-treated-only plants. HM stress alone enhanced the hydrogen peroxide, electrolyte leakage, and malondialdehyde contents in plants. OA-treated plants were observed with enhanced accumulation of cadmium (Cd), copper (Cu), and lead (Pb) concentrations in the roots and shoots of B. napus. The maximum concentration and accumulation of Cd in root, stem, and leaves was increased by 25%, 30%, and 30%; Cu by 42%, 24%, and 17%; and Pb by 45%, 24%, and 43%, respectively, under OA amendment. Average daily intake and hazard quotient (HQ) were calculated for males, females, and children in two phases of treatments in phytoremediation of metals before and after accumulation into B. napus leaves and stems. HQ of metals in the leaves and stem was < 1 before metal accumulation, whereas > 1 was observed after HM accumulation for all males, females, and children. Similarly, the hazard index of the three study types was found > 1. It was observed that the estimated excess lifetime cancer risk was of grade VII (very high risk), not within the accepted range of 1 × 10-4 to 1 × 10-6. Based on the present study, the increased levels of HMs up to carcinogenicity was observed in the B. napus which is not safe to be consumed later as food.


Assuntos
Biodegradação Ambiental , Brassica napus , Ácido Oxálico , Águas Residuárias , Brassica napus/metabolismo , Águas Residuárias/química , Metais Pesados , Medição de Risco , Carcinógenos
2.
J Photochem Photobiol B ; 253: 112876, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452453

RESUMO

Energy has always been the most concerned topic worldwide due to its large consumption. Among various types of energies, light has amazing characteristics and have interesting effects on living organisms. Interest is increasing in the use of laser kernel treatment as an environment friendly physical technique for better results in agronomic crops, but the work is still in progress. The present study was conducted with the aim to examine the application of range of Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) pulsed laser exposures (200, 400, 600, 800, 1000, 1200, 1400 J/cm2) as pre-sowing kernel treatment on seedling survival rate, leaf photosynthetic activity in relation with photosynthetic pigments and visual morphological effects at seedling to maturity stage. Results showed that the low laser exposure (200, 400 and 600 J/cm2) improved the photosynthetic activity in parallel with improvement in chlorophyll a, chlorophyll b, total chlorophyll, carotenoids as well as morphological traits. Kernel treatments with higher laser fluences (800, 1000, 1200 and 1400 J/cm2) showed irregular responses in studied attributes examined at the individual plant level. At 800 and 1000 J/cm2 improvements were found in some plants but at higher doses clear negative impacts were recorded on studied attributes. In conclusion, the lower doses of Nd:YAG pulsed laser fluences are found beneficial for induction of improvement in maize plants for better growth but higher doses were found toxic ones. In future further studies are needed to check the impacts of low laser doses on yield related attributes under field conditions and the high doses might also be used to create variants with beneficial characteristics if possible.


Assuntos
Lasers de Estado Sólido , Lasers de Estado Sólido/uso terapêutico , Zea mays , Clorofila A , Fotossíntese , Luz , Resultado do Tratamento
3.
Heliyon ; 10(3): e24712, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317992

RESUMO

The contamination of farm soils with heavy metals (HMs) has raised significant concerns due to the increased bioavailability and accumulation of HMs in agricultural food crops. To address this issue, a survey experiment was conducted in the suburbs of Multan and Faisalabad to investigate the spatial distribution, bioaccumulation, translocation, and health risks of cadmium (Cd) and lead (Pb) in agricultural crops. The results show a considerable concentration of Cd and Pb in soils irrigated with wastewater, even though these levels were below the permissible limits in water and soil matrices. The pollution index for Cd was mostly greater than 1 at the selected sites, indicating its accumulation in soil over time due to wastewater irrigation. Conversely, the pollution index for Pb was below 1 at all sites. Among the plants, Zea mays accumulated the highest concentration of Cd and Pb. The translocation factor from soil to root was highest for Brassica olearecea (7.037 for Cd) and Zea mays (6.383 for Pb). The target hazard quotient (THQ) value of Cd exceeded the non-carcinogenic limit for most vegetables. The highest value was found in Allium cepa (5.256) and the lowest in Allium sativum (0.040). In contrast, the THQ level of Pb was below the non-carcinogenic limit for most vegetables, except for Allium cepa (1.479), Solanum lycopersicum (1.367), and Solanum tuberosum (1.326). The study highlights that Allium cepa poses the highest health risk for humans, while Medicago sativa poses the highest risk for animals due to Cd and Pb contamination. These results underscore the urgent need for effective measures to mitigate the health risks associated with HM contamination in crops and soils.

4.
Plant Physiol Biochem ; 207: 108433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364631

RESUMO

Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.


Assuntos
Celosia , Hesperidina , Metais Pesados , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Zinco , Cobre , Antioxidantes , Cromo/toxicidade , Peróxido de Hidrogênio , Biodegradação Ambiental , Solo , Fotossíntese , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
5.
J Hazard Mater ; 464: 132955, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976857

RESUMO

The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.


Assuntos
Cádmio , Triticum , Cádmio/toxicidade , Cádmio/metabolismo , Triticum/genética , Triticum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metais/metabolismo , Proteínas de Membrana Transportadoras/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
7.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979354

RESUMO

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Triticum , Cádmio/análise , Cobre/farmacologia , Poluentes do Solo/análise , Nanopartículas/química , Solo/química , Óxidos/farmacologia
8.
Chemosphere ; 341: 140115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689157

RESUMO

In recent times, significant attention has been directed toward the synthesis and application of nanoparticles (NPs) in agriculture sector. In current study, nanoceria (CeO2 NPs) synthesized by green method were employed to address cadmium (Cd) accumulation in wheat (Triticum aestivum L.) cultivated in field with excess Cd. The application of CeO2 NPs was carried out through foliar spraying, performed twice during the growth of T. aestivum. Four levels of CeO2 NPs were used: T0, T1, T2, and T3 as 0, 50, 75, and 100 mgL-1, respectively. Results highlighted the positive effects of CeO2 NPs on various growth parameters, including plant height, spike length, photosynthetic related attributes, as well as straw and grain of grains in comparison to T1 (control group). Furthermore, CeO2 NPs led to a reduction in oxidative stress in the leaves and enhanced in enzyme activities in comparison to T1. Notably, Cd concentrations in straw, roots, and grains exhibited a decline following the treatment with CeO2 NPs, in contrast to the control group. In terms of health implications, the calculated health risk index associated with dietary consumption of grains by adults remained below the defined threshold with supply of nanoparticles. Foliar application of CeO2 NPs proved to be an effective approach in reducing cadmium content in wheat grains. This reduction holds significant potential for minimizing the risk of cadmium exposure to human health through the food chain. Employing the green synthesis method amplifies the potential for extensive production and a wide array of environmental applications for CeO2 NPs. This dual capacity makes them proficient in tackling environmental stresses while concurrently mitigating adverse ecological effects.


Assuntos
Cádmio , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Adulto , Humanos , Triticum , Transporte Biológico , Dieta
9.
Ecotoxicol Environ Saf ; 264: 115382, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619453

RESUMO

Nano-enabled agriculture has emerged as an attractive approach for facilitating soil pollution mitigation and enhancing crop production and nutrition. In this study, we conducted a greenhouse experiment to explore the efficacy of silicon oxide nanoparticles (SiONPs) and iron oxide nanoparticles (FeONPs) in alleviating arsenic (As) toxicity in wheat (Triticum aestivum L.) and elucidated the underlying mechanisms involved. The application of SiONPs and FeONPs at 25, 50, and 100 mg kg-1 soil concentration significantly reduced As toxicity and concurrently improved plant growth performance, including plant height, dry matter, spike length, and grain yield. The biochemical analysis showed that the enhanced plant growth was mainly due to stimulated antioxidative enzymes (catalase, superoxide dismutase, peroxidase) and reduced reactive oxygen species (electrolyte leakage, malondialdehyde, and hydrogen peroxide) in wheat seedlings under As stress upon NPs application. The nanoparticles (NPs) exposure also enhanced the photosynthesis efficiency, including the total chlorophyll and carotenoid contents as compared with the control treatment. Importantly, soil amendments with 100 mg kg-1 FeONPs significantly reduced the acropetal As translocation in the plant root, shoot and grains by 74%, 54% and 78%, respectively, as compared with the control treatment under As stress condition, with relatively lower reduction levels (i.e., 64%, 37% and 58% for the plant root, shoot and grains, respectively) for SiONPs amendment. Overall, the application of NPs especially the FeONPs as nanoferlizers for agricultural crops is a promising approach towards mitigating the negative impact of HMs toxicity, ensuring food safety, and promoting future sustainable agriculture.


Assuntos
Arsênio , Nanopartículas , Poluentes do Solo , Triticum , Arsênio/toxicidade , Arsênio/análise , Cádmio/toxicidade , Antioxidantes/análise , Nanopartículas/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
10.
Plants (Basel) ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38202417

RESUMO

This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.

11.
Environ Pollut ; 286: 117316, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33990051

RESUMO

Six ecotypes of Typha domingensis Pers. Jahlar (E1), Sheikhupura (E2), Sahianwala (E3), Gatwala (E4), Treemu (E5) and Knotti (E6) from different ecological regions were collected to evaluate the leaf anatomical and biochemical attributes under different levels of salinity and nickel stress viz; L0 (control), L1 (100 mM + 50 mg kg-1), L2 (200 mM + 100 mg kg-1) and L3 (300 mM + 150 mg kg-1). Presence of salt and Ni in rooting medium consistently affected growth, anatomical and physio-biochemical attributes in all Typha ecotypes. Discrete anatomical modifications among ecotypes such as reduced leaf thickness, increased parenchyma area, metaxylem cell area, aerenchyma formation and improved metaxylem vessels were recorded with increasing dose of salt and Ni. The minimum anatomical damages were recorded in E1 and E6 ecotypes. In all ecotypes, progressive perturbations in ionic homeostasis (Na+, K+, Cl-, N) due to salt and metal toxicity were evident along with reduction in photosynthetic pigments. Maximum enhancement in Catalase (CAT), Superoxide dismutase (SOD), Peroxidase (POD) and modulated Malondialdehyde (MDA) activity was recorded in E1 and E6 as compared to other ecotypes. Accumulation of large amounts of metabolites such as total soluble sugars, total free amino acids content in Jahlar, Knotti, Treemu and Sahianawala ecotypes under different levels of salt and Ni prevented cellular damages in T. domingensis Pers. The correlation analysis exhibited a close relationship among different levels of salinity and Ni with various plant attributes. PCA-Biplot verified our correlational analysis among various attributes of Typha ecotypes. An obvious separation of Typha characters in response to different salinity and Ni levels was exhibited by PC1. We recommend that genetic potential of T. domingensis Pers. To grow under salt and Ni stresses must be investigated and used for phytoremediation and reclamation of contaminated soil.


Assuntos
Typhaceae , Antioxidantes , Ecótipo , Níquel , Cloreto de Sódio , Solo
12.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396081

RESUMO

The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.


Assuntos
Antioxidantes/farmacologia , Brassica/fisiologia , Cromo/toxicidade , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA