Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 31(4): 825-836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37212060

RESUMO

BACKGROUND: Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated. OBJECTIVE: This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies. METHODS: The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days. RESULTS: The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times. CONCLUSION: The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.


Assuntos
Polímeros , Dosímetros de Radiação , Elétrons , Géis , Radiometria/métodos , Imageamento por Ressonância Magnética
2.
Rev Environ Health ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076952

RESUMO

In today's society, with the continuous development of manufacturing industries and factories related to chemicals, the amount of heavy metals in the inhaled air of humans, water and even food consumption has increased dramatically. The aim of this study was investigation of relationship between exposure to heavy metals on the increased carcinogenicity risk of kidney and bladder. Databases used to for searched were the Springer, Google Scholar, Web of Science, Science Direct (Scopus) and PubMed. At the end after sieve we selected 20 papers. Identify all relevant studies published 2000-2021. The results of this study showed that exposure to heavy metals due to the bio accumulative properties of these metals can cause kidney and bladder abnormalities and provide the basis through various mechanisms for malignant tumors in these organs. Based on result this study, since a limited number of heavy metals including copper, iron, zinc and nickel in very small amounts as micronutrients play a very important role in the function of enzymes and the body cells biological reactions, but exposure to some of them like arsenic, lead, vanadium and mercury will cause irreversible effects on people's health and cause various diseases including cancers of the liver, pancreas, prostate, breast, kidney and bladder. The kidneys, ureter and bladder are the most important organs in the urinary tract on human. According to the result of this study, the duty of this urinary system is to remove toxins, chemicals and heavy metals from the blood, balance electrolytes, excrete excess fluid, produce urine and transfer it to the bladder. This mechanism causes the kidneys and bladder to be highly associated with these toxins and heavy metals, which can lead to various diseases in these two important organs. According to the finding the reducing exposure to heavy metals in various ways can prevent many diseases related to this system and reduce the incidence of kidney and bladder cancers.

3.
Cell Signal ; 106: 110632, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36805844

RESUMO

In atherosclerosis, the gradual buildup of lipid particles into the sub-endothelium of damaged arteries leads to numerous lipid alterations. The absorption of these modified lipids by monocyte-derived macrophages in the arterial wall leads to cholesterol accumulation and increases the likelihood of foam cell formation and fatty streak, which is an early characteristic of atherosclerosis. Foam cell formation is related to an imbalance in cholesterol influx, trafficking, and efflux. The formation of foam cells is heavily regulated by various mechanisms, among them, the role of epigenetic factors like microRNA alteration in the formation of foam cells has been well studied. Recent studies have focused on the potential interplay between microRNAs and foam cell formation in the pathogenesis of atherosclerosis; nevertheless, there is significant space to progress in this attractive field. This review has focused to examine the underlying processes of foam cell formation and microRNA crosstalk to provide a deep insight into therapeutic implications in atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Células Espumosas , MicroRNAs/genética , MicroRNAs/uso terapêutico , Colesterol , Aterosclerose/patologia , Macrófagos/patologia
4.
Future Oncol ; 18(38): 4209-4231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519554

RESUMO

Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Neoplasias Urogenitais , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Próstata/metabolismo
5.
Front Oncol ; 12: 1067974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793341

RESUMO

A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA