Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(36): e2321874121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39207736

RESUMO

Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid ß-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.


Assuntos
Metabolismo Energético , Transportador Equilibrativo 1 de Nucleosídeo , Metabolismo Energético/efeitos dos fármacos , Animais , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/genética , Gorduras na Dieta/farmacologia , Gorduras na Dieta/metabolismo , Dictyostelium/metabolismo , Dictyostelium/genética , Dictyostelium/efeitos dos fármacos , Ratos , Dieta Cetogênica , Regulação da Expressão Gênica/efeitos dos fármacos , Caprilatos/farmacologia , Proliferação de Células/efeitos dos fármacos , Adenosina/metabolismo , Adenosina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
2.
Bioorg Med Chem ; 67: 116788, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597097

RESUMO

A series of amino acid based 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp22 and the amide backbone NH of Ile23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe157 and Asp156, part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Amidas , Humanos , Domínios Proteicos
3.
Antiviral Res ; 203: 105344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598780

RESUMO

The emergence of several zoonotic viruses in the last twenty years, especially the pandemic outbreak of SARS-CoV-2, has exposed a dearth of antiviral drug therapies for viruses with pandemic potential. Developing a diverse drug portfolio will be critical to rapidly respond to novel coronaviruses (CoVs) and other viruses with pandemic potential. Here we focus on the SARS-CoV-2 conserved macrodomain (Mac1), a small domain of non-structural protein 3 (nsp3). Mac1 is an ADP-ribosylhydrolase that cleaves mono-ADP-ribose (MAR) from target proteins, protects the virus from the anti-viral effects of host ADP-ribosyltransferases, and is critical for the replication and pathogenesis of CoVs. In this study, a luminescent-based high-throughput assay was used to screen ∼38,000 small molecules for those that could inhibit Mac1-ADP-ribose binding. We identified 5 compounds amongst 3 chemotypes that inhibit SARS-CoV-2 Mac1-ADP-ribose binding in multiple assays with IC50 values less than 100 µM, inhibit ADP-ribosylhydrolase activity, and have evidence of direct Mac1 binding. These chemotypes are strong candidates for further derivatization into highly effective Mac1 inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina Difosfato Ribose/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Proteínas não Estruturais Virais/química
4.
bioRxiv ; 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35262078

RESUMO

A series of amino acid based 7H -pyrrolo[2,3- d ]pyrimidines were designed and synthesized to discern the structure activity relationships against the SARS-CoV-2 nsp3 macrodomain (Mac1), an ADP-ribosylhydrolase that is critical for coronavirus replication and pathogenesis. Structure activity studies identified compound 15c as a low-micromolar inhibitor of Mac1 in two ADP-ribose binding assays. This compound also demonstrated inhibition in an enzymatic assay of Mac1 and displayed a thermal shift comparable to ADPr in the melting temperature of Mac1 supporting binding to the target protein. A structural model reproducibly predicted a binding mode where the pyrrolo pyrimidine forms a hydrogen bonding network with Asp 22 and the amide backbone NH of Ile 23 in the adenosine binding pocket and the carboxylate forms hydrogen bonds to the amide backbone of Phe 157 and Asp 156 , part of the oxyanion subsite of Mac1. Compound 15c also demonstrated notable selectivity for coronavirus macrodomains when tested against a panel of ADP-ribose binding proteins. Together, this study identified several low MW, low µM Mac1 inhibitors to use as small molecule chemical probes for this potential anti-viral target and offers starting points for further optimization.

5.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33158944

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections. Mac1 is essential for pathogenesis in multiple animal models of CoV infection, implicating it as a virulence factor and potential therapeutic target. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) Mac1 domains exhibit similar structural folds, and all 3 proteins bound to ADP-ribose with affinities in the low micromolar range. Importantly, using ADP-ribose-detecting binding reagents in both a gel-based assay and novel enzyme-linked immunosorbent assays (ELISAs), we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate than the others. In addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.IMPORTANCE SARS-CoV-2 has recently emerged into the human population and has led to a worldwide pandemic of COVID-19 that has caused more than 1.2 million deaths worldwide. With no currently approved treatments, novel therapeutic strategies are desperately needed. All coronaviruses encode a highly conserved macrodomain (Mac1) that binds to and removes ADP-ribose adducts from proteins in a dynamic posttranslational process that is increasingly being recognized as an important factor that regulates viral infection. The macrodomain is essential for CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry and enzyme activity are critical first steps for these efforts. Here, we report the crystal structure of SARS-CoV-2 Mac1 in complex with ADP-ribose and describe its ADP-ribose binding and hydrolysis activities in direct comparison to those of SARS-CoV and MERS-CoV Mac1 proteins. These results are an important first step for the design and testing of potential therapies targeting this unique protein domain.


Assuntos
N-Glicosil Hidrolases/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Coronavirus/química , Coronavirus/enzimologia , Coronavirus/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Cinética , N-Glicosil Hidrolases/química , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/química
6.
J Biol Chem ; 295(52): 17986-17996, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33051211

RESUMO

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.


Assuntos
COVID-19/metabolismo , NAD/imunologia , Poli(ADP-Ribose) Polimerases/imunologia , SARS-CoV-2/imunologia , Células A549 , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Adulto , Animais , COVID-19/imunologia , Linhagem Celular Tumoral , Feminino , Furões , Humanos , Imunidade Inata , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/sangue , Compostos de Piridínio , SARS-CoV-2/metabolismo
7.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244383

RESUMO

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Assuntos
ADP-Ribosilação/imunologia , Vírus de RNA/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Adenosina Difosfato Ribose/metabolismo , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Humanos , Interferons/imunologia , Mutação , Poli(ADP-Ribose) Polimerases/imunologia , Domínios Proteicos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
8.
J Virol ; 92(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29467319

RESUMO

The hepatitis C virus (HCV) E2 glycoprotein is a major target of the neutralizing antibody (nAb) response, with multiple type-specific and broadly neutralizing antibody (bnAb) epitopes identified. The 412-to-423 region can generate bnAbs that block interaction with the cell surface receptor CD81, with activity toward multiple HCV genotypes. In this study, we reveal the structure of rodent monoclonal antibody 24 (MAb24) with an extensive contact area toward a peptide spanning the 412-to-423 region. The crystal structure of the MAb24-peptide 412-to-423 complex reveals the paratope bound to a peptide hairpin highly similar to that observed with human MAb HCV1 and rodent MAb AP33, but with a different angle of approach. In viral outgrowth experiments, we demonstrated three distinct genotype 2a viral populations that acquired resistance to MAb24 via N415D, N417S, and N415D/H386R mutations. Importantly, the MAb24-resistant viruses exhibited significant increases in sensitivity to the majority of bnAbs directed to epitopes within the 412-to-423 region and in additional antigenic determinants located within E2 and the E1E2 complex. This study suggests that modification of N415 causes a global change in glycoprotein structure that increases its vulnerability to neutralization by other antibodies. This finding suggests that in the context of an antibody response to viral infection, acquisition of escape mutations in the 412-to-423 region renders the virus more susceptible to neutralization by other specificities of nAbs, effectively reducing the immunological fitness of the virus. A vaccine for HCV that generates polyspecific humoral immunity with specificity for the 412-to-423 region and at least one other region of E2 is desirable.IMPORTANCE Understanding how antibodies neutralize hepatitis C virus (HCV) is essential for vaccine development. This study reveals for the first time that when HCV develops resistance to a major class of bnAbs targeting the 412-to-423 region of E2, this results in a concomitant increase in sensitivity to neutralization by a majority of other bnAb specificities. Vaccines for the prevention of HCV infection should therefore generate bnAbs directed toward the 412-to-423 region of E2 and additional bnAb epitopes within the viral glycoproteins.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Epitopos/metabolismo , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Epitopos/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/metabolismo , Humanos , Neoplasias Hepáticas , Estrutura Secundária de Proteína , Tetraspanina 28/imunologia , Vacinas contra Hepatite Viral/imunologia
9.
J Virol ; 89(24): 12245-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378182

RESUMO

UNLABELLED: Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. IMPORTANCE: This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to reduce the ability of HCV to elicit NAbs directed toward the conserved core domain. Future studies aimed at generating a three-dimensional structure for intact E2 containing HVR1, and the adjoining NAb epitope at residues 412 to 428, together with HVR2, will reveal how the variable regions modulate antigenic structure.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Hepacivirus/química , Anticorpos Anti-Hepatite C/química , Proteínas do Envelope Viral/química , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Hepacivirus/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
10.
PLoS One ; 10(5): e0126397, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970466

RESUMO

The E2 glycoprotein of Hepatitis C virus (HCV) is a major target of the neutralizing antibody (NAb) response with the majority of epitopes located within its receptor binding domain (RBD; 384-661). Within E2 are three variable regions located at the N-terminus (HVR1; 384-411), and internally at 460-480 (HVR2) and 570-580 [intergenotypic variable region (igVR)], all of which lie outside a conserved core domain that contains the CD81 binding site, essential for attachment of virions to host cells and a major target of NAbs. In this study, we examined the evolution of the E1 and E2 region in two patients infected with genotype 3a virus. Whereas one patient was able to clear the acute infection, the other developed a chronic infection. Mutations accumulated at multiple positions within the N-terminal HVR1 as well as within the igVR in both patients over time, whereas mutations in HVR2 were observed only in the chronically infected patient. Mutations within or adjacent to the CD81 contact site were observed in both patients but were less frequent and more conservative in the patient that cleared his/her infection. The evolution of CD81 binding function and antigenicity was examined with longitudinal E2 RBD sequences. The ability of the RBD to bind CD81 was completely lost by week 108 in the patient that developed chronic HCV. In the second patient, the ability of the week 36 RBD, just prior to viral clearance, to bind CD81 was reduced ~50% relative to RBD sequences obtained earlier. The binding of a NAb specific to a conserved epitope located within E2 residues 411-428 was significantly reduced by week 108 despite complete conservation of its epitope suggesting that E2 antigenicity is allosterically modulated. The exposure of non-neutralizing antibody epitopes was similarly explored and we observed that the epitope of 3 out of 4 non-NAbs were significantly more exposed in the RBDs representing the late timepoints in the chronic patient. By contrast, the exposure of non-neutralizing epitopes was reduced in the patient that cleared his/her infection and could in part be attributed to sequence changes in the igVR. These studies reveal that during HCV infection, the exposure of the CD81 binding site on E2 becomes increasingly occluded, and the antigenicity of the E2 RBD towards both neutralizing and non-neutralizing antibodies is modulated via allosteric mechanisms.


Assuntos
Hepacivirus/genética , Hepatite C/virologia , Proteínas do Envelope Viral/genética , Regulação Alostérica , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Evolução Molecular , Genótipo , Células HEK293 , Hepacivirus/imunologia , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Tetraspanina 28/química , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA