Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Sci (Lond) ; 136(22): 1661-1681, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36331065

RESUMO

Cardiac hypertrophy is necessary for the heart to accommodate an increase in workload. Physiological, compensated hypertrophy (e.g. with exercise) is reversible and largely due to cardiomyocyte hypertrophy. Pathological hypertrophy (e.g. with hypertension) is associated with additional features including increased fibrosis and can lead to heart failure. RAF kinases (ARAF/BRAF/RAF1) integrate signals into the extracellular signal-regulated kinase 1/2 cascade, a pathway implicated in cardiac hypertrophy, and activation of BRAF in cardiomyocytes promotes compensated hypertrophy. Here, we used mice with tamoxifen-inducible cardiomyocyte-specific BRAF knockout (CM-BRAFKO) to assess the role of BRAF in hypertension-associated cardiac hypertrophy induced by angiotensin II (AngII; 0.8 mg/kg/d, 7 d) and physiological hypertrophy induced by phenylephrine (40 mg/kg/d, 7 d). Cardiac dimensions/functions were measured by echocardiography with histological assessment of cellular changes. AngII promoted cardiomyocyte hypertrophy and increased fibrosis within the myocardium (interstitial) and around the arterioles (perivascular) in male mice; cardiomyocyte hypertrophy and interstitial (but not perivascular) fibrosis were inhibited in mice with CM-BRAFKO. Phenylephrine had a limited effect on fibrosis but promoted cardiomyocyte hypertrophy and increased contractility in male mice; cardiomyocyte hypertrophy was unaffected in mice with CM-BRAFKO, but the increase in contractility was suppressed and fibrosis increased. Phenylephrine induced a modest hypertrophic response in female mice and, in contrast with the males, tamoxifen-induced loss of cardiomyocyte BRAF reduced cardiomyocyte size, had no effect on fibrosis and increased contractility. The data identify BRAF as a key signalling intermediate in both physiological and pathological hypertrophy in male mice, and highlight the need for independent assessment of gene function in females.


Assuntos
Hipertensão , Miócitos Cardíacos , Feminino , Masculino , Camundongos , Animais , Proteínas Proto-Oncogênicas B-raf/genética , Fenilefrina , Tamoxifeno/farmacologia , Cardiomegalia/genética , Fibrose
2.
Biochem J ; 479(3): 401-424, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147166

RESUMO

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.


Assuntos
Cardiomegalia/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas B-raf/fisiologia , Animais , Carbamatos/farmacologia , Carbamatos/toxicidade , Cardiomegalia/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Dimerização , Técnicas de Introdução de Genes , Insuficiência Cardíaca/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/biossíntese , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade
3.
Clin Sci (Lond) ; 135(14): 1631-1647, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34296750

RESUMO

Raf kinases signal via extracellular signal-regulated kinases 1/2 (ERK1/2) to drive cell division. Since activating mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) are highly oncogenic, BRAF inhibitors including dabrafenib have been developed for cancer. Inhibitors of ERK1/2 signalling used for cancer are cardiotoxic in some patients, raising the question of whether dabrafenib is cardiotoxic. In the heart, ERK1/2 signalling promotes not only cardiomyocyte hypertrophy and is cardioprotective but also promotes fibrosis. Our hypothesis is that ERK1/2 signalling is not required in a non-stressed heart but is required for cardiac remodelling. Thus, dabrafenib may affect the heart in the context of, for example, hypertension. In experiments with cardiomyocytes, cardiac fibroblasts and perfused rat hearts, dabrafenib inhibited ERK1/2 signalling. We assessed the effects of dabrafenib (3 mg/kg/d) on male C57BL/6J mouse hearts in vivo. Dabrafenib alone had no overt effects on cardiac function/dimensions (assessed by echocardiography) or cardiac architecture. In mice treated with 0.8 mg/kg/d angiotensin II (AngII) to induce hypertension, dabrafenib inhibited ERK1/2 signalling and suppressed cardiac hypertrophy in both acute (up to 7 d) and chronic (28 d) settings, preserving ejection fraction. At the cellular level, dabrafenib inhibited AngII-induced cardiomyocyte hypertrophy, reduced expression of hypertrophic gene markers and almost completely eliminated the increase in cardiac fibrosis both in interstitial and perivascular regions. Dabrafenib is not overtly cardiotoxic. Moreover, it inhibits maladaptive hypertrophy resulting from AngII-induced hypertension. Thus, Raf is a potential therapeutic target for hypertensive heart disease and drugs such as dabrafenib, developed for cancer, may be used for this purpose.


Assuntos
Antineoplásicos/farmacologia , Fibrose/tratamento farmacológico , Hipertensão/tratamento farmacológico , Imidazóis/farmacologia , Oximas/farmacologia , Animais , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
4.
Biochem J ; 478(11): 2059-2079, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34002209

RESUMO

Insulin and insulin-like growth factor stimulate protein synthesis and cardioprotection in the heart, acting through their receptors (INSRs, IGF1Rs) and signalling via protein kinase B (PKB, also known as Akt). Protein synthesis is increased in hearts perfused at alkaline pHo to the same extent as with insulin. Moreover, α1-adrenergic receptor (α1-AR) agonists (e.g. phenylephrine) increase protein synthesis in cardiomyocytes, activating PKB/Akt. In both cases, the mechanisms are not understood. Our aim was to determine if insulin receptor-related receptors (INSRRs, activated in kidney by alkaline pH) may account for the effects of alkaline pHo on cardiac protein synthesis, and establish if α1-ARs signal through the insulin receptor family. Alkaline pHo activated PKB/Akt signalling to the same degree as insulin in perfused adult male rat hearts. INSRRs were expressed in rat hearts and, by immunoblotting for phosphorylation (activation) of INSRRs/INSRs/IGF1Rs, we established that INSRRs, together with INSRs/IGF1Rs, are activated by alkaline pHo. The INSRR/INSR/IGF1R kinase inhibitor, linsitinib, prevented PKB/Akt activation by alkaline pHo, indicating that INSRRs/INSRs/IGF1Rs are required. Activation of PKB/Akt in cardiomyocytes by α1-AR agonists was also inhibited by linsitinib. Furthermore, linsitinib inhibited cardiomyocyte hypertrophy induced by α1-ARs in cultured cells, reduced the initial cardiac adaptation (24 h) to phenylephrine in vivo (assessed by echocardiography) and increased cardiac fibrosis over 4 days. We conclude that INSRRs are expressed in the heart and, together with INSRs/IGF1Rs, the insulin receptor family provide a potent system for promoting protein synthesis and cardioprotection. Moreover, this system is required for adaptive hypertrophy induced by α1-ARs.


Assuntos
Álcalis/farmacologia , Fibrose/patologia , Hipertrofia/patologia , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Fibrose/induzido quimicamente , Fibrose/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Imidazóis/farmacologia , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Pirazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/genética , Receptores Adrenérgicos alfa 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA