Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Plant Sci ; 15: 1377364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011300

RESUMO

Background and aims: Nitrogen (N) distribution in plants is intricately linked to key physiological functions, including respiration, photosynthesis, structural development, and nitrogen storage. However, the specific effects of different N morphologies on N accumulation and plant growth are poorly understood. Our research specifically focused on determining how different N morphologies affect N absorption and biomass accumulation. Methods: This study elucidated the impact of different application rates (CK: 0 g N/plant; T1: 4 g N/plant; T2: 8 g N/plant) of N fertilizer on N and biomass accumulation in tobacco cultivars Hongda and K326 at different growth stages. Results: Our findings emphasize the critical role of N distribution in various plant parts, including leaves, stems, and roots, in determining the complex mechanisms of N and biomass accumulation in tobacco. We found that in relation to total N, a greater ratio of water-soluble N (N w) in leaves facilitated N accumulation in leaves. In contrast, an increased ratio of SDS (detergent)-insoluble N (N in-SDS) in leaves and non-protein N (N np) in roots hindered this increase. Additionally, our results indicate that a greater proportion of N np in leaves has a negative impact on biomass accumulation in leaves. Furthermore, elevated levels of N in-SDS, N w, and N np in roots, and N np in leaves adversely affected biomass accumulation in tobacco leaves. The Hongda cultivar exhibited greater biomass and N accumulation abilities as compared to K326. Conclusions: Our findings highlight the significant role of distribution of N morphologies on plant growth, as well as N and biomass accumulation in tobacco plants. Understanding N distribution allows farmers to optimize N application, minimizing environmental losses and maximizing yield for specific cultivars. These insights advance sustainable agriculture by promoting efficient resource use and reducing environmental impact.

2.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999050

RESUMO

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanocompostos , Ácido Vanílico , Ácido Vanílico/química , Ácido Vanílico/farmacologia , Nanocompostos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Prata/química , Prata/farmacologia , Quitosana/química , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Linhagem Celular Tumoral
3.
Pol J Microbiol ; 73(2): 207-215, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905281

RESUMO

Chikungunya virus (CHIKV) causes a debilitating fever and joint pain, with no specific antiviral treatment available. Halogenated secondary metabolites from plants are a promising new class of drug candidates against chikungunya, with unique properties that make them effective against the virus. Plants produce these compounds to defend themselves against pests and pathogens, and they are effective against a wide range of viruses, including chikungunya. This study investigated the interactions of halogenated secondary metabolites with nsP2pro, a therapeutic target for CHIKV. A library of sixty-six halogenated plant metabolites screened previously for ADME properties was used. Metabolites without violation of Lipinski's rule were docked with nsP2pro using AutoDock Vina. To find the stability of the pipoxide chlorohydrin-nsP2pro complex, the GROMACS suite was used for MD simulation. The binding free energy of the ligand-protein complex was computed using MMPBSA. Molecular docking studies revealed that halogenated metabolites interact with nsP2pro, suggesting they are possible inhibitors. Pipoxide chlorohydrin showed the greatest affinity to the target. This was further confirmed by the MD simulations, surface accessible area, and MMPBSA studies. Pipoxide chlorohydrin, a halogenated metabolite, was the most potent against nsP2pro in the survey.


Assuntos
Antivirais , Vírus Chikungunya , Simulação de Acoplamento Molecular , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/tratamento farmacológico , Metabolismo Secundário , Simulação de Dinâmica Molecular , Halogenação , Plantas/química , Simulação por Computador , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química
4.
Food Chem Toxicol ; 191: 114840, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944144

RESUMO

Alicyclobacillus bacteria are important contaminants in the beverage industry because their spores remain in the product after usual pasteurization. At the same time, their impact on human health has yet to be characterized, as it is generally assumed to be low or non-existent. However, these bacteria are causing quality concerns mainly due to odor and taste changes of the product. Since potential health effects are not precisely known, an experimental assessment was performed, including a biosafety assessment of six viable and non-viable vegetative and spore forms of Alicyclobacillus spp. strains using cell cultures and rodent study. The monolayer of Caco-2 (Cancer coli-2) cells was investigated for its adsorption effect on the epithelium of the small intestine of mice. Lactate dehydrogenase leakage (LDH) and transepithelial electrical resistance (TEER) tests were used to ensure the integrity of the cell membrane and tight junctions. The methylthiazole tetrazolium bromide (MTT) assay examined in vitro cytotoxicity in Caco-2 and HepG2 cell lines. The hemolysis of erythrocytes was spectrophotometrically measured. The results showed negligible cytotoxicity or non-toxic response in mice. In conclusion, Alicyclobacillus spp. exhibited biocompatibility with negligible cytotoxicity and minimal safety concerns.

5.
Water Environ Res ; 96(5): e11033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720414

RESUMO

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Assuntos
Praias , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Índia , Microplásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Plásticos/química , Plásticos/análise
6.
Environ Res ; 252(Pt 1): 118454, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387488

RESUMO

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.


Assuntos
Níquel , Hidrocarbonetos Policíclicos Aromáticos , Níquel/química , Hidrocarbonetos Policíclicos Aromáticos/química , Nanopartículas Metálicas/química , Catálise , Fotólise , Raios Ultravioleta , Nanopartículas/química , Concentração de Íons de Hidrogênio , Antracenos/química , Adsorção
7.
Appl Biochem Biotechnol ; 196(3): 1365-1375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37395945

RESUMO

Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.


Assuntos
Apoptose , Neoplasias do Colo , Sesquiterpenos , Feminino , Humanos , Células HCT116 , Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular , Ciclo Celular
8.
Cell Signal ; 114: 111003, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38048857

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directs the transcription of genes involved in the promotion of cell survival and proliferation, inflammation, angiogenesis, invasion, and migration. Overactivation of STAT3 is often witnessed in human cancers, thereby making it a good target in oncology. Herein the efficacy of Leonurine (Leo), a bioactive alkaloid present in Herba leonuri, was investigated for its STAT3-inhibitory potential in hepatocellular carcinoma (HCC) cells. Leo downregulated the persistent as well as IL-6-driven activation of STAT3. Leo abrogated the nuclear localization and DNA interacting ability of STAT3. Leo was also found to impart STAT3 inhibition by mitigating the activation of upstream kinases such as JAK1, JAK2, and Src both in constitutive and IL-6 inducible systems. Leo curbed the STAT3-driven luciferase gene expression and the depletion of STAT3 resulted in the reduced responsiveness of HCC cells to Leo. Pervanadate exposure counteracted Leo-induced STAT3 inhibition suggesting the involvement of a protein tyrosine phosphatase. SHP-1 was significantly elevated upon Leo exposure whereas the depletion of SHP-1 was found to revert the effect of Leo on STAT3. Leo induced apoptosis and also significantly potentiated the cytotoxic effect of paclitaxel, doxorubicin, and sorafenib. Leo was found to be non-toxic up to the dose of 10 mg/kg in NCr nude mice. In conclusion, Leo was demonstrated to induce cytotoxicity in HCC cells by mitigating the persistent of activation of STAT3 pathway.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Fator de Transcrição STAT3/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais , Regulação para Cima , Camundongos Nus , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose
9.
Artigo em Inglês | MEDLINE | ID: mdl-38158485

RESUMO

Urolithiasis or nephrolithiasis is a condition of kidney stone formation and is considered a painful disease of the urinary tract system. In this work, we planned to discover the therapeutic roles of myricetin on the ethylene glycol (EG)-induced nephrolithiasis in rats. The experimental rats were treated with 0.75% of EG through drinking water for 4 weeks to initiate the nephrolithiasis and subsequently treated with 25 and 50 mg/kg of myricetin. The body weight and urine volume were measured regularly. After the sacrification of rats, the samples were collected, and serum and urinary biomarkers such as creatinine, urea, Ca2 + ion, and BUN, OPN, oxalate, and citrate levels were determined using assay kits. These biomarkers, the MDA level and CAT, SOD, and GPx activities, were assessed in the kidney tissue homogenates. The IL-6, IL-1ß, and TNF-α levels were also quantified using respective kits. The histopathological analysis was done on the kidney tissues. Myricetin treatment did not show major changes in the body weight and kidney weight in the EG-induced rats. The treatment with 25 and 50 mg/kg of myricetin considerably reduced the urea, creatinine, BUN, Ca2 + ion, and oxalate and increased the citrate content in serum and urine samples of EG-induced rats. Further, myricetin depleted the inflammatory cytokines and MDA levels and elevated the CAT, SOD, and GPx activities in the renal tissues. The activities of ALT, AST, ALP, GGT, and LDH were also reduced by the myricetin. Furthermore, the myricetin upheld the histoarchitecture of the kidneys. The outcomes of this investigation propose that myricetin is effective in EG-induced urolithiasis probably because of its antioxidant, anti-inflammatory, and renoprotective activities. In addition, further studies are still required to verify the precise therapeutic mechanism of myricetin.

10.
ACS Omega ; 8(45): 42987-42999, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024752

RESUMO

Hepatitis C virus (HCV) causes various liver complications, including fibrosis, cirrhosis, and steatosis, and finally progresses toward hepatocellular carcinoma (HCC). The current study aimed to explore the antiviral activity of the traditional Pakistani medicinal plant Salix nigra (S. nigra) known as black willow against the hepatitis C virus (HCV). The anti-HCV activity of S. nigra was established against stable Hep G2 cell lines expressing the HCV NS3 gene. Various plant-derived compounds with anti-HCV activity were identified, making phytotherapy a promising alternative to conventional treatments due to their cost-effectiveness and milder side effects. The two extraction methods (Maceration and Soxhlet) and four solvents (n-hexane, methanol, ethyl acetate, and water) were used to obtain crude extracts from S. nigra. Cytotoxicity testing showed that methanol (CC50 25 µg/mL) and water (CC50 30 µg/mL) extracts were highly toxic, while ethyl acetate and n-hexane (CC50 > 200 µg/mL) extracts were nontoxic at low concentrations (10-50 µg/mL), making them suitable for further anti-HCV investigations. Stable transfection of the NS3 gene was successfully performed in Hep G2 cells, creating a cellular expression system for studying virus-host interaction. The ethyl acetate extract of S. nigra exhibited significant inhibition of NS3 gene expression (mRNA and protein levels). The phytochemical analysis of S. nigra was also performed using the high-performance liquid chromatography (HPLC) technique. The phytochemical analysis identified several polyphenolic substances in the extracts of S. nigra. Our results concluded that the extracts of S. nigra have significantly reduced the expression of the NS3 gene at mRNA and protein levels. These findings contribute to the global efforts to combat hepatitis C by offering plant-based treatment options for HCV management.

11.
Environ Res ; 232: 116300, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268207

RESUMO

Microalgae is one the promising source of energy for the production of biofuel and other value-added products to replace the existing conventional fossil fuels. However, low lipid content and poor cell harvesting are the key challenges. Based on the growth conditions the lipid productivity will be affected. The current study examines the mixtures of both wastewater and NaCl on the microalgae growth was studied. The microalgae used for conducting the tests were Chlorella vulgaris microalgae. Mixtures of the wastewater was prepared under the different concentrations of the seawater, classified as S0%, S20%, and S40%. The growth of microalgae was studied in the presence of these mixtures, and the addition of Fe2O3 nanoparticles was included to stimulate the growth. The results showed that increasing the salinity in the wastewater resulted in decreased biomass production, but significantly increased lipid content compared to S0%. The highest lipid content was recorded at S40%N with 21.2%. The Highest lipid productivity was also witnessed for S40% with 45.6 mg/Ld. The cell diameter was also found to increase with increasing salinity content in the wastewater. The addition of Fe2O3 nanoparticles in the seawater was found to enhance the productivity of the microalgae extensively, resulting in 9.2% and 6.15% increased lipid content and lipid productivity respectively compared to conventional cases. However, the inclusion of the nanoparticles slightly increased the zeta potential of microalgal colloids, with no noticeable effects on the cell diameter or bio-oil yields. Based on these findings, Chlorella vulgaris was identified as a suitable candidate for treating wastewater with high salinity exposure.


Assuntos
Chlorella vulgaris , Microalgas , Nanopartículas , Lipídeos , Águas Residuárias , Água do Mar , Biocombustíveis , Biomassa
12.
Environ Res ; 232: 116335, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290620

RESUMO

Environmental factors such as exposure to ionizing radiations, certain environmental pollutants, and toxic chemicals are considered as risk factors in the development of breast cancer. Triple-negative breast cancer (TNBC) is a molecular variant of breast cancer that lacks therapeutic targets such as progesterone receptor, estrogen receptor, and human epidermal growth factor receptor-2 which makes the targeted therapy ineffective in TNBC patients. Therefore, identification of new therapeutic targets for the treatment of TNBC and the discovery of new therapeutic agents is the need of the hour. In this study, CXCR4 was found to be highly expressed in majority of breast cancer tissues and metastatic lymph nodes derived from TNBC patients. CXCR4 expression is positively correlated with breast cancer metastasis and poor prognosis of TNBC patients suggesting that suppression of CXCR4 expression could be a good strategy in the treatment of TNBC patients. Therefore, the effect of Z-guggulsterone (ZGA) on the expression of CXCR4 in TNBC cells was examined. ZGA downregulated protein and mRNA expression of CXCR4 in TNBC cells and proteasome inhibition or lysosomal stabilization had no effect on the ZGA-induced CXCR4 reduction. CXCR4 is under the transcriptional control of NF-κB, whereas ZGA was found to downregulate transcriptional activity of NF-κB. Functionally, ZGA downmodulated the CXCL12-driven migration/invasion in TNBC cells. Additionally, the effect of ZGA on growth of tumor was investigated in the orthotopic TNBC mice model. ZGA presented good inhibition of tumor growth and liver/lung metastasis in this model. Western blotting and immunohistochemical analysis indicated a reduction of CXCR4, NF-κB, and Ki67 in tumor tissues. Computational analysis suggested PXR agonism and FXR antagonism as targets of ZGA. In conclusion, CXCR4 was found to be overexpressed in majority of patient-derived TNBC tissues and ZGA abrogated the growth of TNBC tumors by partly targeting the CXCL12/CXCR4 signaling axis.


Assuntos
Neoplasias Hepáticas , Pregnenodionas , Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Receptores CXCR4/genética
13.
Environ Res ; 231(Pt 2): 116209, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217129

RESUMO

Bemisia tabaci Gennadius, also renowned as the silver leaf whitefly, is among the most damaging polyphagous insect pests in many commercially important crops and commodities. A set of field experiments were conducted for three consecutive years i.e., 2018-2020, to investigate the role of variations in rainfall, temperature, and relative humidity on the abundance of B. tabaci in okra (Abelmoschus esculentus L. Moench). In the first experiment, the variety Arka Anamika was cultivated twice a year to analyse the incidence of B. tabaci concerning the prevailing weather factors and the overall pooled incidence recorded during the dry and wet season was 1.34 ± 0.51 to 20.03 ± 1.42 and 2.26 ± 1.08 to 18.3 ± 1.96, respectively. Similarly, it was observed that the highest number of B. tabaci catch (19.51 ± 1.64 whiteflies/3 leaves) was recorded in morning hours between 08:31 to 09:30 a.m. The Yellow Vein Mosaic Disease (YVMD) is a devastating disease of okra caused by begomovirus, for which B. tabaci acts as a vector. In another experiment, screening was conducted to check the relative susceptibility of three different varieties viz., ArkaAnamika, PusaSawani, and ParbhaniKranti against B. tabaci (incidence) and YVMD ((Percent Disease Incidence (PDI), Disease Severity Index (DSI), and Area Under the Disease Progress Curve (AUDPC)). The recorded data was normalized by standard transformation and subjected to ANOVA for population dynamics and PDI. Pearson's rank correlation matrix and Principal Component Analysis (PCA) have been used to relate the influences of various weather conditions on distribution and abundance. SPSS and R software were used to create the regression model for predicting the population of B. tabaci. Late sown PusaSawani evolved as a highly susceptible variety in terms of B. tabaci (24.83 ± 6.79 adults/3leaves; mean ± SE; N = 10) as well as YVMD i.e., PDI (38.00 ± 4.95 infected plants/50plants), DSI (71.6-96.4% at 30 DAS) and AUDPC (mean ß-value = 0.76; R2 = 0.96) while early sown Parbhani Kranti least susceptible to both. However, the variety ArkaAnamika was observed as moderately susceptible to B. tabaci and its resultant disease. Moreover, environmental factors were predominantly responsible for regulating the population of insect pests in the field and hence its productivity like rainfall and relative humidity were negative while the temperature was positively correlated with B. tabaci (incidence) and YVMD (AUDPC). The findings are helpful for the farmers to choose need-based IPM strategies than timing-based, which would fit perfectly with the present agro-ecosystems in all ways.


Assuntos
Abelmoschus , Hemípteros , Animais , Hemípteros/fisiologia , Incidência , Ecossistema , Tempo (Meteorologia)
14.
Environ Res ; 231(Pt 1): 116096, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172679

RESUMO

The goal of this study was to extract saponins from the tuberous root of Decalepis hamiltonii and assess their potential clinical applications, which included antioxidant, antibacterial, antithrombotic, and anticancer properties. Surprisingly, the results of this study revealed that the extracted saponins have excellent antioxidant activities, as demonstrated by 2,2-diphenylpicrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Hydrogen peroxide (H2O2), and Nitric oxide (NO) scavenging assays. Nonetheless, at a concentration of 100 g/mL, crude saponin had excellent antibacterial activity, particularly against gramme positive bacteria (Staphylococcus aureus, Bacillus subtilis, Staphylococcus epidermidis, and Micrococcus luteus), followed by gramme negative bacteria (Escherichia coli, Salmonella typhi, Proteus mirabilis, and Klebsiella pneumonia). Despite this, the crude saponin had no effect on Aspergillus niger and Candida albicans. The crude saponin also possesses outstanding in vitro antithrombotic activity on blood clot. Interestingly, the crude saponins have an outstanding anticancer activity of 89.26%, with an IC50 value of 58.41 µg/mL. Overall, the findings conclude that crude saponin derived from D. hamiltonii tuberous root could be used in pharmaceutical formulations.


Assuntos
Anti-Infecciosos , Saponinas , Antioxidantes/farmacologia , Fibrinolíticos/farmacologia , Peróxido de Hidrogênio , Saponinas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
15.
Environ Res ; 223: 115421, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773634

RESUMO

The Silk sericin protein was conjugated with magnesium oxide (MgO) nanoparticles to form SS-MgO-NPs . UV, XRD, FTIR, SEM, DLS, and EDX were used to confirm the formation of SS-MgO-NPs. The absorption band of SS-MgO-NPs using UV-visible spectra was observed at 310 nm, with an average size of the nanoparticles was 65-88 nm analyzed from DLS. The presence of alcohol, CN, and CC, alkanes, alkenes, and cis alkenes, in silk sericin, is confirmed by FT-IR and may act as a stabilizing agent. Later SS-MgO-NPs were evaluated for antioxidant, antibacterial, anti-biofilm, ,anti-aging, and anticancer properties. The SS-MgO-NPs inhibited the formation of biofilm of Pseudomonas aeruginosa and Bacillus cereus. The blood compatibility of SS-MgO-NPs, delaying coagulation was observed using human, blood, and goat blood samples. The SS-MgO-NPs exhibited significant anticancer activity on MCF-7 (IC50 207.6 µg/mL) cancer cell lines. Correspondingly, SS-MgO-NPs demonstrated dose-dependent inhibition of the enzymes in the following order collagenase > elastase > tyrosinase > hyaluronidase, with IC50 values of 75.3, 85.3, 133.6, and 156.3 µgmL-1, respectively. This exhibits the compoundposses anti-aging properties. So, in in vitro settings, SS-MgO-NPs can be used as an antibacterial, anti-aging, and anticancer agent. Additionally, in vivo research is necessary to validate its therapeutic applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Sericinas , Humanos , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Óxido de Magnésio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Biofilmes
16.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829653

RESUMO

In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 µM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC.

17.
Environ Res ; 221: 115283, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639016

RESUMO

The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.


Assuntos
Detergentes , Cloreto de Sódio , Animais , Detergentes/análise , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Índia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Metais/análise , Plumas , Concentração de Íons de Hidrogênio , Temperatura , Galinhas/genética
18.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672680

RESUMO

Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 µM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells.

19.
IUBMB Life ; 75(2): 149-160, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36262053

RESUMO

The Akt signaling pathway is an oncogenic cascade activated in the bone marrow microenvironment of multiple myeloma (MM) cells and contributes to their uncontrolled proliferation. Abrogation of Akt signaling has been presented as one of the prime therapeutic targets in the treatment of MM. In the present report, we have investigated the effect of Brucein D (BD) on Akt-driven signaling events in MM cells. BD (300 nM) substantially inhibited cell viability and imparted growth-inhibitory effects in U266 cells as evidenced by cell viability assays and flow cytometric analysis. Effect of BD on cell viability was evaluated by MTT assay. Apoptotic cells and cell cycle arrest by BD were analyzed by flow cytometer. The results of the TUNEL assay and western blotting showed that BD induces apoptosis of MM cells by activating caspase-8 and 9 with subsequent reduction in the expression of antiapoptotic proteins (Bcl-2, Bcl-xl, survivin, cyclin D1, COX-2, VEGF, MMP-9). Analysis of activated kinases by Phospho-Kinase Array Kit revealed that Akt, p70S6K, HSP60, p53, and WNK1 were strongly expressed in untreated cells and BD treatment reversed this effect. Using transfection experiments, AKT depletion led to a decrease in phosphorylation of Akt, mTOR, p70S6K, and WNK. However, Akt overexpression led to increase in phosphorylation of these proteins. Depletion of Akt potentiated the apoptosis-inducing effect of BD whereas overexpression displayed resistance to BD-induced apoptosis suggesting the role of Akt in chemoresistance. Taken together, BD mitigates Akt-dependent signaling pathways in MM cells to impart its anticancer activity.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proliferação de Células , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Microambiente Tumoral
20.
Environ Res ; 216(Pt 1): 114455, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202242

RESUMO

The biosynthesis of AgNPs using a methanolic extract of Naringi crenulata is described in this study. UV-visible spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscope (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to characterize the synthesized AgNPs. The UV-visible spectrum revealed a sharp peak at 420 nm, which represents silver's strong Plasmon resonance. FTIR and XRD confirmed the functional groups (N-H stretch, alkanes, O-H stretch, carboxylic acid, N-H bend, C-X fluoride, and C-N stretch) and face-centered cubic crystalline structure of synthesized AgNPs. SEM and TEM analyses revealed that the synthesized nanoparticles had a spherical morphology with an average diameter of 32.75 nm. The synthesized AgNPs have antibacterial activity against multidrug-resistant bacteria pathogens such as Vibrio cholerae, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Klebsiella pneumoniae. AgNPs can be synthesized using a methanolic extract of Naringi crenulate, and the resulting particle may have wide range of biological applications.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA