Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diseases ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38534979

RESUMO

Squamous cell carcinoma of the head and neck (HNSCC) is a globally prevalent form of cancer with significant morbidity and mortality rates. The present study examines the relationship of serum pro-inflammatory cytokines and leptin levels with the effectiveness of therapy in individuals with HNSCC and their potential role as biomarkers for treatment response and toxicity. Induction chemotherapy and concomitant chemoradiotherapy were evaluated for efficacy and safety in 52 individuals with HNSCC. Both response and toxicity were evaluated, and serum levels of pro-inflammatory cytokines Interlukin-1 beta (IL-1ß), Interlukin-2 (IL-2), Interlukin-6 (IL-6), and Tumor Necrosis Factor-Alpha (TNF-α) and leptin were measured using enzyme-linked immunoassay before and after treatment. Before treatment, these measurements were made in comparison with a control group with 50 healthy people. The results showed that serum cytokines and leptin levels varied depending on the response to treatment, with patients who had a complete or partial response (PR) showing significant decreases in IL-1 ß, IL-6, and TNF-α levels and significant increases in IL-2 and leptin levels after treatment, with an improvement in cachexia. These results imply that variations in serum pro-inflammatory cytokines and leptin levels are likely related to the therapeutic effectiveness in HNSCC and may act as biomarkers for treatment response.

2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38399423

RESUMO

Breast cancer begins in the breast cells, mainly impacting women. It starts in the cells that line the milk ducts or lobules responsible for producing milk and can spread to nearby tissues and other body parts. In 2020, around 2.3 million women across the globe received a diagnosis, with an estimated 685,000 deaths. Additionally, 7.8 million women were living with breast cancer, making it the fifth leading cause of cancer-related deaths among women. The mutational changes, overexpression of drug efflux pumps, activation of alternative signalling pathways, tumour microenvironment, and cancer stem cells are causing higher levels of drug resistance, and one of the major solutions is to identify multitargeted drugs. In our research, we conducted a comprehensive screening using HTVS, SP, and XP, followed by an MM/GBSA computation of human-approved drugs targeting HER2/neu, BRCA1, PIK3CA, and ESR1. Our analysis pinpointed IRESSA (Gefitinib-DB00317) as a multitargeted inhibitor for these proteins, revealing docking scores ranging from -4.527 to -8.809 Kcal/mol and MM/GBSA scores between -49.09 and -61.74 Kcal/mol. We selected interacting residues as fingerprints, pinpointing 8LEU, 6VAL, 6LYS, 6ASN, 5ILE, and 5GLU as the most prevalent in interactions. Subsequently, we analysed the ADMET properties and compared them with the standard values of QikProp. We extended our study for DFT computations with Jaguar and plotted the electrostatic potential, HOMO and LUMO regions, and electron density, followed by a molecular dynamics simulation for 100 ns in water, showing an utterly stable performance, making it a suitable drug candidate. IRESSA is FDA-approved for lung cancer, which shares some pathways with breast cancers, clearing the hurdles of multitargeted drugs against breast and lung cancer. This has the potential to be groundbreaking; however, more studies are needed to concreate IRESSA's role.

3.
J Biomol Struct Dyn ; 42(1): 11-21, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37771142

RESUMO

Lung Cancer is the topmost death causing cancer and results from smoking, air pollution, cigar, exposure to asbestos or radon-like substances, and genetic factors. The cases of Lung Cancer in south Asian developing nations are being seen most due to heavy pollution and unbalanced lifestyle and putting a considerable burden on healthcare systems. The Food and Drug Administration of the USA has approved almost 100 drugs against SCLC and NSLC and a few drugs that are given to minimise the side effect of anticancer drugs. However, the drugs are shown to be resistant at significantly higher stages and non-affective on cancerous cells and have long-term side effects due to designing the drug by keeping one protein/gene target while designing or repurposing the drugs. In this study, we have taken five main lung cancer protein targets- Nerve growth factor protein (1SG1), Apoptosis inhibitor survivin (1XOX), Heat shock protein (3IUC), Protein tyrosine phosphate (3ZM3), Aldo-keto reductase (4XZL) and screened the complete prepared Drug Bank library of 155888 compounds and identified Variolin B (DB08694) as a multitargeted inhibitor against lung cancer using HTVS, SP and XP sampling algorithms followed by MM\GBSA calculation to sort the best pose. Variolin B is a natural marine antitumor and antiviral compound, so we analysed the ADMET properties and interaction patterns and then simulated all five P-L complexes for 100 ns in water using the NPT ensemble to check its selves against lung cancer. The docking results, ADMET and fingerprints have shown a good performance, and RMSD and RMSF results were with least deviation and fluctuations (<2Å) and produced a huge contact with other residues making the complex stable. The complexes initially fluctuated and deviated due to changes in the solute medium and sudden heat and stabilise after a few ns. However, extensive experimental validation is required before human use.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias Pulmonares , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Ligação Proteica , Detecção Precoce de Câncer
4.
J Biomol Struct Dyn ; 42(7): 3507-3519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37855303

RESUMO

Lung Cancer is the one that causes more fatalities in the world compared to other cancers, and its uniqueness is that it can be found in both males and females. However, recent data has shown that males are more affected due to lifestyle habits like smoking, tobacco consumption and inhaling polluted air. The World Health Organization has kept lung cancer on its priority list as it causes 1.8 million deaths worldwide each year, and the predictions show that the cases are going to increase year by year, and by 2050, there can be 3.8 million new cases and 3.2 million deaths, and the global health system is not prepared for it. Also, finding drug candidates that can help shrink cancerous cells and lead to their death is essential to reduce global mortality. The system needs drug compounds that can inhibit multiple paths together not to enter drug resistance quickly and to reduce costs. Our study identified a compound named Variolin B (DB08694) that belongs to the organic compounds class of pyrrolopyridines. The identified compound can inhibit multiple proteins, drastically reducing the global burden. Variolin B was identified as a potential candidate against lung cancer using the multisampling algorithm such as HTVS, SP, and XP, followed by MM\GBSA calculations showing the docking score of -9.245 Kcal/mol to -5.92 Kcal/mol. Also, we have validated it with ADMET predictions and molecular fingerprinting to analyse the interaction patterns. Further, the study was extended to molecular dynamics simulations for 100 ns to understand the complex stability and simulative interactions. The complex's overall molecular dynamics simulation helped us understand that the identified candidate is stable with the lowest deviation and fluctuations.Communicated by Ramaswamy H. Sarma.


Assuntos
Compostos Aza , Neoplasias Pulmonares , Pirimidinas , Feminino , Masculino , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias Pulmonares/tratamento farmacológico
5.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139037

RESUMO

Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual screening strategy was employed to identify potential natural CTSL inhibitors. The random forest ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore, we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding 149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening using a structure-based approach, yielding 13 hits with higher binding affinity compared to the positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes. ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after experimental validation, with the potential to provide therapeutic benefits in cancer management.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Catepsina L/metabolismo , Ligantes , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Simulação de Acoplamento Molecular
6.
Antibiotics (Basel) ; 12(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887215

RESUMO

Pseudomonas aeruginosa is notorious for its ability to develop a high level of resistance to antimicrobial agents. Resistance-nodulation-division (RND) efflux pumps could mediate drug resistance in P. aeruginosa. The present study aimed to evaluate the antibacterial and anti-efflux activities of cinnamon essential oil either alone or combined with ciprofloxacin against drug resistant P. aeruginosa originated from human and animal sources. The results revealed that 73.91% of the examined samples were positive for P. aeruginosa; among them, 77.78% were of human source and 72.73% were recovered from animal samples. According to the antimicrobial resistance profile, 48.73% of the isolates were multidrug-resistant (MDR), 9.2% were extensive drug-resistant (XDR), and 0.84% were pan drug-resistant (PDR). The antimicrobial potential of cinnamon oil against eleven XDR and one PDR P. aeruginosa isolates was assessed by the agar well diffusion assay and broth microdilution technique. The results showed strong antibacterial activity of cinnamon oil against all tested P. aeruginosa isolates with inhibition zones' diameters ranging from 34 to 50 mm. Moreover, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of cinnamon oil against P. aeruginosa isolates ranged from 0.0562-0.225 µg/mL and 0.1125-0.225 µg/mL, respectively. The cinnamon oil was further used to evaluate its anti-efflux activity against drug-resistant P. aeruginosa by phenotypic and genotypic assays. The cartwheel test revealed diminished efflux pump activity post cinnamon oil exposure by two-fold indicating its reasonable impact. Moreover, the real-time quantitative polymerase chain reaction (RT-qPCR) results demonstrated a significant (p < 0.05) decrease in the expression levels of MexA and MexB genes of P. aeruginosa isolates treated with cinnamon oil when compared to the non-treated ones (fold changes values ranged from 0.4204-0.7474 for MexA and 0.2793-0.4118 for MexB). In conclusion, we suggested the therapeutic use of cinnamon oil as a promising antibacterial and anti-efflux agent against drug-resistant P. aeruginosa.

7.
J Biomol Struct Dyn ; 41(14): 6633-6642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35971958

RESUMO

The coronaviridae family has caused the most destruction among all the viral families in modern sciences. It is one of the recently discovered and added members of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has caused the global pandemic and significant destruction worldwide. However, scientists worldwide have developed vaccines, which are being given to humans. The mutated strain of the virus has caused various uncertainties about whether the discovered drug and vaccines affect it. Even after the World Health Organization's approval for the vaccines, their effectiveness and protection ratio are still a major concern. At the community level, to this date, there is no medicine available to cure the patients. In this study, we have screened the vast library from Drug Bank and identified N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) that can work against two major targets of SARS CoV-2, replication-transcription and RNA dependent polymerase. Further, we have performed the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and molecular dynamics simulation of the compound with both proteins individually, giving us enough evidence that the said drugs can work against the two targets together. Inhibiting the action of any of both proteins may lead to retaining the virus, and having a dual-targeted drug can be an extra precise measure for this process. The NSL-CG is an experimental drug belonging to the peptidomimetics class included in the small group of drugs with a docking score of -9.079 kcal/mol with replication-transcription -7.885 kcal/mol with RNA-dependent polymerase. Hence, through the complete flowed study, the NSL-CG can be further experimentally validated in in-vitro and in-vivo conditions before human utilisation.Communicated by Ramaswamy H. Sarma.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36360622

RESUMO

The prevalence of obesity has risen in the last decades, and it has caused massive health burdens on people's health, especially metabolic and cardiovascular issues. The risk of vitamin D insufficiency is increased by obesity, because adipose tissue alters both the requirements for and bioavailability of vitamin D. Exercise training is acknowledged as having a significant and long-term influence on body weight control; the favorable impact of exercise on obesity and obesity-related co-morbidities has been demonstrated via various mechanisms. The current work illustrated the effects of vitamin D supplementation and exercise on obesity induced by a high-fat diet (HFD) and hepatic steatosis in rats and explored how fatty acid transport protein-4 (FATP4) and Toll-like receptor-4 antibodies (TLR4) might be contributing factors to obesity and related hepatic steatosis. Thirty male albino rats were divided into five groups: group 1 was fed a normal-fat diet, group 2 was fed an HFD, group 3 was fed an HFD and given vitamin D supplementation, group 4 was fed an HFD and kept on exercise, and group 5 was fed an HFD, given vitamin D, and kept on exercise. The serum lipid profile adipokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were analyzed, and the pathological changes in adipose and liver tissues were examined. In addition, the messenger-ribonucleic acid (mRNA) expression of FATP4 and immunohistochemical expression of TLR4 in adipose and liver tissues were evaluated. Vitamin D supplementation and exercise improved HFD-induced weight gain and attenuated hepatic steatosis, along with improving the serum lipid profile, degree of inflammation, and serum adipokine levels. The expression of FATP4 and TLR4 in both adipose tissue and the liver was downregulated; it was noteworthy that the group that received vitamin D and was kept on exercise showed also improvement in the histopathological picture of this group. According to the findings of this research, the protective effect of vitamin D and exercise against obesity and HFD-induced hepatic steatosis is associated with the downregulation of FATP4 and TLR4, as well as a reduction in inflammation.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Natação , Vitamina D , Masculino , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Lipídeos , Fígado , Obesidade/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Vitaminas/metabolismo , Ratos
9.
Microbiol Spectr ; 10(4): e0025022, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35852338

RESUMO

Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated Fe3O4 nanoparticles (NPs) with each of the p-coumaric acid (p-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare Fe3O4 NPs was ~15 nm, while RHL-coated Fe3O4@PVA@p-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating IcaABCD and CsgBAC operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. IMPORTANCE Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-Fe3O4@PVA@p-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated IcaABCD and CsgBAC gene loci.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Escherichia coli , Glicolipídeos , Nanopartículas Magnéticas de Óxido de Ferro , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Sorogrupo , Staphylococcus aureus
10.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624793

RESUMO

Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-ß-glucoside, and Quercetin-3-O-ß-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.

11.
Front Chem ; 10: 890675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518717

RESUMO

Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.

12.
Front Pharmacol ; 13: 860898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401227

RESUMO

Perftoran® (perfluorodecalin) is an oxygen carrier, and carboplatin is a common chemotherapy drug used worldwide for lung cancer treatment. Hypoxia is one of the factors that induce resistance of lung cancer cells to carboplatin. This study explored the role of Perftoran®, as an oxygen carrier, in lowering the resistance of lung cancer cells to carboplatin through suppression of hypoxia pathway mediators. The effect of Perftoran® on the resistance of human lung cancer A549 cells to carboplatin was investigated through the evaluation of cytotoxicity by MTT, cell death mode by dual DNA staining, DNA damage by comet assay, DNA platination (DNA/carboplatin adducts) by atomic absorption spectroscopy, hypoxia degree by pimonidazole, HIF-1α/HIF-2α concentrations by ELISA, expression of miRNAs (hypoxamiRs miR-210, miR-21, and miR-181a) by qRT-PCR, and the content of drug resistance transporter MRP-2 by immunocytochemical staining. Results indicated that compared to carboplatin, Perftoran®/carboplatin decreased cell resistance to carboplatin by potentiating its cytotoxicity using only 45% of carboplatin IC50 and inducing apoptosis. Perftoran® induced DNA platination and DNA damage index in cells compared to carboplatin alone. Moreover, compared to treatment with carboplatin alone, co-treatment of cells with Perftoran® and carboplatin inhibited cellular pimonidazole hypoxia adducts, diminished HIF-1α/HIF-2α concentrations, suppressed hypoxamiR expression, and decreased MRP-2. In conclusion, Perftoran® inhibited resistance of lung cancer cells to carboplatin through the inhibition of both hypoxia pathway mediators and the drug resistance transporter MRP-2 and through the induction of DNA/carboplatin adduct formation.

13.
Front Pharmacol ; 13: 844104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370727

RESUMO

Indocyanine green (ICG) is a nontoxic registered photosensitizer used as a diagnostic tool and for photodynamic therapy (PDT). Hypoxia is one the main factors affecting PDT efficacy. Perfluorodecalin emulsion (Perftoran®) is a known oxygen carrier. This study investigated the effect of Perftoran® on ICG/PDT efficacy in presence and absence of Perftoran® via evaluation of phototoxicity by MTT; hypoxia estimation by pimonidazole, HIF-1α/ß by ELISA, and 17 miRNAs (tumor suppressors, oncomiRs, and hypoxamiRs) were analyzed by qPCR. Compared to ICG/PDT, Perftoran®/ICG/PDT led to higher photocytotoxicity, inhibited pimonidazole hypoxia adducts, inhibited HIF-1α/ß concentrations, induced the expression of tumor-suppressing miRNAs let-7b/d/f/g, and strongly inhibited the pro-hypoxia miRNA let-7i. Additionally, Perftoran®/ICG/PDT suppressed the expression of the oncomiRs miR-155, miR-30c, and miR-181a and the hypoxamiRs miR-210 and miR-21 compared to ICG/PDT. In conclusion, Perftoran® induced the phototoxicity of ICG/PDT and inhibited ICG/PDT-hypoxia via suppressing HIF-α/ß, miR-210, miR-21, let-7i, miR-15a, miR-30c, and miR-181a and by inducing the expression of let-7d/f and miR-15b.

14.
BMC Res Notes ; 11(1): 280, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739419

RESUMO

OBJECTIVES: In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects. RESULTS: Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease.


Assuntos
Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/sangue , Idoso , Proteínas Sanguíneas/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Padrões de Referência , Resultado do Tratamento
15.
Blood ; 128(4): 542-52, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27118451

RESUMO

The complex interplay between cancer cells, stromal cells, and immune cells in the tumor microenvironment (TME) regulates tumorigenesis and provides emerging targets for immunotherapies. Crosstalk between CD4(+) T cells and proliferating chronic lymphocytic leukemia (CLL) tumor B cells occurs within lymphoid tissue pseudofollicles, and investigating these interactions is essential to understand both disease pathogenesis and the effects of immunotherapy. Tumor-derived extracellular vesicle (EV) shedding is emerging as an important mode of intercellular communication in the TME. In order to characterize tumor EVs released in response to T-cell-derived TME signals, we performed microRNA (miRNA [miR]) profiling of EVs released from CLL cells stimulated with CD40 and interleukin-4 (IL-4). Our results reveal an enrichment of specific cellular miRNAs including miR-363 within EVs derived from CD40/IL-4-stimulated CLL cells compared with parental cell miRNA content and control EVs from unstimulated CLL cells. We demonstrate that autologous patient CD4(+) T cells internalize CLL-EVs containing miR-363 that targets the immunomodulatory molecule CD69. We further reveal that autologous CD4(+) T cells that are exposed to EVs from CD40/IL-4-stimulated CLL cells exhibit enhanced migration, immunological synapse signaling, and interactions with tumor cells. Knockdown of miR-363 in CLL cells prior to CD40/IL-4 stimulation prevented the ability of CLL-EVs to induce increased synapse signaling and confer altered functional properties to CD4(+) T cells. Taken together, these data reveal a novel role for CLL-EVs in modifying T-cell function that highlights unanticipated complexity of intercellular communication that may have implications for bidirectional CD4(+) T-cell:tumor interactions within the TME.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Comunicação Celular/imunologia , Interleucina-4/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Neoplasias/imunologia , Vesículas Secretórias/imunologia , Linfócitos T CD4-Positivos/patologia , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , MicroRNAs/imunologia , RNA Neoplásico/imunologia , Vesículas Secretórias/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA