Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124266

RESUMO

Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous extract preparation. Phytochemical composition and antioxidant capacity were assessed using DPPH assays. Extracts were tested for antiparasitic, antibacterial, anti-biofilm, and anticancer activities through standard in vitro assays, measuring IC50 values, and evaluating mechanisms of action, including cell viability and high-content screening assays. The results showed that the aquatic plants were rich in pharmaceutical compounds. The antioxidant capacity of these extracts exceeded that of vitamin C. The extracts showed promising antiparasitic activity against pathogens like Opisthorchis viverrini and Plasmodium falciparum, with IC50 values between 0.7 and 2.5 µg/mL. They also demonstrated low MICs against various pathogenic bacteria, causing DNA damage, increased plasma membrane permeability, and 90% biofilm inhibition. In terms of anticancer activity, extracts were effective against a panel of cancer cell lines, with Ludwigia stolonifera exhibiting the highest efficacy. Its IC50 ranged from 0.5 µg/mL for pancreatic, esophageal, and colon cancer cells to 1.5 µg/mL for gastric cancer cells. Overall, IC50 values for all extracts were below 6 µg/mL, showing significant apoptotic activity, increased nuclear intensity, plasma membrane permeability, mitochondrial membrane permeability, and cytochrome c release, and outperforming doxorubicin. This study highlights the potential of aquatic plants as sources for new, safe, and effective drugs with strong antiparasitic, antibacterial, and anticancer properties.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535640

RESUMO

Construction of a homojunction is an effective strategy for effective charge transfer to suppress charge carrier recombination in augmented photocatalysis. The present work reveals the synthesis of homojunction formation through the reinforcement of Cd nanostructures into a solid lattice of zinc vanadate (Zn3V2O8, ZnV) using the hydrothermal method. The formation of a homojunction between cadmium vanadate (CdV, Cd3V2O8) and ZnV was confirmed by various spectroscopic and electron microscopic techniques such as Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) associated with energy-dispersive X-ray (EDX) mapping, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectrophotometry (UV-Vis). The synthesized material was explored for photocatalytic hydrogen (PC H2) production using the water splitting process under visible-light illumination. The spectroscopic and experimental results revealed that the formation of a CdV/ZnV homojunction significantly improved the transport of photogenerated charge carriers (electron-hole pairs) and thus resulted in enhanced H2 production efficiency (366.34 µmol g-1 h-1) as compared to pristine ZnV (229.09 µmol g-1 h-1) and CdV (274.91 µmol g-1 h-1) using methanol as a sacrificial reagent (SR) with water under visible-light illumination. The synergistic effect of Cd on ZnV NPs resulted in band gap reduction and broadened visible light absorption which was attributed to enhanced H2 production. The current study explains how a homojunction affects various features of important factors behind photocatalytic activity, which supports significant insights into the advancement of materials in the future.

3.
Environ Sci Pollut Res Int ; 30(56): 119016-119033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919499

RESUMO

Acute kidney injury (AKI) is a life-threatening complication that accompanies rhabdomyolysis. Daidzein is a dietary isoflavone that has various biological activities. This study examined the therapeutic potential of daidzein and the underlying mechanisms against AKI induced by glycerol in male rats. Animals were injected once with glycerol (50%, 10 ml/kg, intramuscular) for induction of AKI and pre-treated orally with daidzein (25, 50, and 100 mg/kg) for 2 weeks. Biochemical, histopathological, immunohistopathological, and molecular parameters were assessed to evaluate the effect of daidzein. The results revealed that the model group displayed remarkable functional, molecular, and structural changes in the kidney. However, pre-administration of daidzein markedly decreased the kidney relative weight as well as the levels of urea, creatinine, K, P, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and cystatin C. Further, daidzein lessened the rhabdomyolysis-related markers [lactate dehydrogenase (LDH) and creatine kinase (CK)]. Notably, the enhancement of the antioxidant biomarkers [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and reduced glutathione (GSH) is accompanied by a decrease in malondialdehyde (MDA) and nitric oxide (NO) levels. Moreover, upregulated gene expression levels of nuclear factor erythroid 2-related factor 2 (Nfe212) and hemeoxygenase-1 (Hmox1) were exerted by daidzein administration. Rats who received daidzein displayed markedly lower interleukin-1ß (IL-1ß), tumor nuclear factor-α (TNF-α), myleoperoxidase (MPO), and nuclear factor kappa B (NF-κB) levels together with higher interleukin-10 (IL-10) related to the model group. Remarkably, significant declines were noticed in the pro-apoptotic (Bax and caspase-3) and rises in antiapoptotic (Bcl-2) levels in the group that received daidzein. The renal histological screening validated the aforementioned biochemical and molecular alterations. Our findings support daidzein as a potential therapeutic approach against AKI-induced renal injury via suppression of muscle degradation, oxidative damage, cytokine release, and apoptosis.


Assuntos
Injúria Renal Aguda , Isoflavonas , Rabdomiólise , Ratos , Masculino , Animais , Glicerol/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Rim , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Estresse Oxidativo , Isoflavonas/farmacologia , Rabdomiólise/induzido quimicamente , Rabdomiólise/complicações , Rabdomiólise/patologia
4.
Environ Sci Pollut Res Int ; 30(57): 119814-119824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930572

RESUMO

Although several anticolitic drugs are available, their application is associated with numerous side effects. Chicoric acid (CA) is a hydroxycinnamic acid found naturally in chicory (Cichorium intybus), purple coneflower (Echinacea purpurea), and basil with numerous health benefits, such as antioxidative and anti-inflammatory activities. Here, the potential anticolitic efficiency of CA against dextran sulfate sodium (DSS)-induced colitis in rats was examined in rats. Animals were randomly assigned to the following five groups: control, CA (100 mg/kg body weight), DSS [(DSS); 4% w/v], CA + DSS (100 mg/kg), and the 5-aminosalicylic acid (100 mg/kg) + DSS group. The obtained data revealed that CA significantly prevented the shortening of colon length. Meanwhile, the oxidative stress-related enzymes were increased, while malondialdehyde and nitric oxide, were markedly decreased significantly by CA. The results also indicated that CA administration decreased significantly the pro-apoptogenic indices (Bax and caspase-3) and enhanced significantly Bcl-2, the anti-apoptogenic protein. Moreover, DSS caused a significant elevation of pro-inflammatory mediators, including interleukin-1ß, tumor necrosis factor-α, myeloperoxidase, cyclooxygenase II, prostaglandin E2, and peroxisome proliferator-activated receptor gamma. Interestingly, these changes were significantly decreased following the CA administration. At the molecular level, CA supplementation has increased significantly the expression level of nuclear factor erythroid 2-related factor-2 (Nrf2) and decreased the expressions of nitric oxide synthase and mitogen-activated protein kinase 14. CA has been determined to significantly lessen DSS-induced colitis by activating Nrf2 and its derived antioxidant molecules and suppressing inflammation and apoptosis cascades associated with the development of colitis; suggesting that CA could be used as an alternative naturally-derived anticolitic agent.


Assuntos
Antioxidantes , Colite , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Apoptose , Modelos Animais de Doenças
5.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678116

RESUMO

Aromatic amines are important chemical intermediates that hold an irreplaceable significance for synthesizing many chemical products. However, they may react with substances excreted from human bodies to generate blood poisoning, skin eczema, and dermatitis disease and even induce cancer-causing high risks to human health and the environment. Metal tungstates have been proven to be highly efficient materials for developing various toxic gases or chemical detection sensor systems. However, the major factors of the sensors, such as sensitivity, selectivity, stability, response, and recovery times, still need to be optimized for practical technological applications. In this work, Ni-doped ZnWO4 mixed metal tungstate nanocomposite material was synthesized by the hydrothermal method and explored as a sensor for the fluorometric determination of p-nitroaniline (p-NA). Transmission electron microscopy (TEM) was used for the elucidation of the optimized particle diameter. Scanning electron microscopy (SEM) was employed to observe the surface morphological changes in the material during the solid-state reactions. The vibration modes of as-prepared samples were analyzed using Fourier-transform infrared spectroscopy (FTIR). The chemical bonding and oxidation states of individual elements involved in material synthesis were observed using X-ray photoelectron spectroscopy (XPS). The PL activities of the metal tungstate nanoparticles were investigated for the sensing of p-nitroaniline (p-NA). The obtained results demonstrated that ZnNiWO4 was more effective in sensing p-NA than the other precursors were by using the quenching effect. The material showed remarkably high sensitivity towards p-NA in a concentration range of 25-1000 µM, and the limit of detection (LOD) value was found to be 1.93 × 10-8 M for ZnWO4, 2.17 × 10-8 M for NiWO4, and 2.98 × 10-8 M for ZnNiWO4, respectively.

6.
Environ Sci Pollut Res Int ; 30(7): 17657-17669, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36197616

RESUMO

5-Fluorouracil (5-FU) is a chemotherapy used to treat many types of cancer. Cardiotoxicity is one of the common drawbacks of 5-FU therapy. Quercetin (Qu) is a bioflavonoid with striking biological activities. This research aimed to assess the ameliorative effect of Qu against 5-FU-mediated cardiotoxicity. Thirty-five rats were allocated into five groups: control group (normal saline), 5-FU group (30 mg/kg, intraperitoneally), Qu group (50 mg/kg, oral), 25 mg/kg Qu+5-FU group, and 50 mg/kg Qu+5-FU. The experimental animals were received the above-mentioned drugs for 21 days. Results showed that 5-FU significantly elevated creatine kinase, lactate dehydrogenase, serum cholesterol and triglyceride, and upregulated troponin and renin mRNA expression. Additionally, cardiac oxidant/antioxidant imbalance was evident in elevated oxidants (malondialdehyde and nitric oxide) and depleted antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione). 5-FU also downregulated the gene expression of nuclear factor erythroid 2-related factor 2. Furthermore, 5-FU significantly increased cardiac pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and upregulated gene expression of nuclear factor kappa-B. 5-FU significantly enhanced cardiac apoptosis through upregulating caspase-3 expression and downregulating B-cell lymphoma 2. Immunohistochemical and histopathological examinations verified the above-mentioned findings. However, all these changes were significantly ameliorated in Qu pre-administered rats. Conclusively, Qu counteracted 5-FU-mediated cardiotoxicity through potent antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes , Quercetina , Ratos , Animais , Antioxidantes/metabolismo , Quercetina/farmacologia , NF-kappa B/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo , Caspase 3/metabolismo , Doxorrubicina , Apoptose
7.
Environ Sci Pollut Res Int ; 30(6): 16597-16611, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36184707

RESUMO

Thymoquinone (TQ) is an active constituent in Nigella sativa (black cumin) and is extensively reported for its distinguished antioxidant and anti-inflammatory bioactivities. Despite the local protective response of acute inflammation, it contributes to the development of various disease conditions such as cell death, organ damage, or carcinogenesis. Hence, in this study, the effects of orally administered TQ (50 mg/kg and 100 mg/kg) for 14 days against edema development, oxidative stress, and inflammation were investigated in paw edema induced by carrageenan in mice. Indomethacin (10 mg/kg) was used as a reference drug. The results revealed that TQ reduced the paw edema volume in a time-dependent manner, attenuated acetic acid-provoked writhing movements, and reduced xylene-triggered ear edema. Hematological findings revealed marked normalization of altered counts of WBCs, and platelets. Furthermore, paw tissue levels of malondialdehyde and nitric oxide showed marked decreases together with increases in nuclear factor erythroid 2-related factor 2, glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase after TQ administration. Additionally, TQ decreased pro-inflammatory mediators, such as interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein-1, C-reactive protein, myeloperoxidase, and nuclear factor kappa-B in the inflamed paw tissue. Moreover, appreciable decreases were recorded in cyclooxygenase-2 and its product prostaglandin E2 and the immune reaction of tumor necrosis factor-alpha in TQ-treated mice. Histopathological findings further validated the potential antiedematous, anti-inflammatory power of TQ in inflamed tissues. Conclusively, the results encourage the potent application of TQ to subside acute inflammatory events because of its striking antioxidant and anti-inflammatory properties in inflamed paw tissue.


Assuntos
Antioxidantes , Fator de Necrose Tumoral alfa , Camundongos , Animais , Carragenina/toxicidade , Antioxidantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Óxido Nítrico/metabolismo
8.
Environ Toxicol ; 38(2): 266-277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36447373

RESUMO

Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Ratos , Acetilcolinesterase/metabolismo , Cloreto de Alumínio/toxicidade , Cloreto de Alumínio/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Glutationa/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Prodigiosina/uso terapêutico
9.
Front Oncol ; 12: 933750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457501

RESUMO

Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.

10.
Front Nutr ; 9: 966557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204384

RESUMO

This project was designed to explore the xanthine oxidase (XO) inhibitory mechanism of eight structurally diverse phenolic compounds [quercetin: C1, quercetin-3-rhamnoside: C2, 4, 5-O-dicaffeoylquinic acid: C3, 3, 5-O-dicaffeoylquinic acid: C4, 3, 4-O-di-caffeoylquinic acid: C5, 4-O-caffeoylquinic acid (C6), 3-O-caffeoylquinic acid: C7, and caffeic acid: C8]. For this purpose, in-vitro and different computational methods were applied to determine the xanthine oxidase (XO) inhibitory potential of eight structurally diverse phenolic compounds. The results revealed that phenolic compounds (C1-C8) possess strong to weak XO inhibitory activity. These results were further confirmed by atomic force microscopy (AFM) and 1H NMR analysis. Furthermore, computational study results revealed that phenolic compounds (C1-C8) bind with the surrounding amino acids of XO at the molybdenum (MO) site. These in-vitro and in-silico results divulge that phenolic compounds have a strong potential to lower uric acid levels via interacting with the XO enzyme and can be used to combat hyperuricemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA