Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Histochem Cytochem ; 64(8): 495-501, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27315825

RESUMO

Banding cytogenetics is still the gold standard in many fields of leukemia diagnostics. However, in chronic lymphocytic leukemia (CLL), GTG-banding results are hampered by a low mitotic rate of the corresponding malignant lymphatic cells. Thus, interphase fluorescence in situ hybridization (iFISH) for the detection of specific cytogenetic aberrations is done nowadays as a supplement to or even instead of banding cytogenetics in many diagnostic laboratories. These iFISH studies can be performed on native blood or bone marrow smears or in nuclei after cultivation and stimulation by a suitable mitogen. As there are only few comparative studies with partially conflicting results for the detection rates of aberrations in cultivated and native cells, this question was studied in 38 CLL cases with known aberrations in 11q22.2, 11q22.3, 12, 13q14.3, 14q32.33, 17p13.1, or 18q21.32. The obtained results implicate that iFISH directly applied on smears is in general less efficient for the detection of CLL-specific genetic abnormalities than for cultivated cells. This also shows that applied cell culture conditions are well suited for malignant CLL cells. Thus, to detect malignant aberrant cells in CLL, cell cultivation and cytogenetic workup should be performed and the obtained material should be subjected to banding cytogenetics and iFISH.


Assuntos
Medula Óssea/patologia , Aberrações Cromossômicas , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Análise Citogenética , Feminino , Humanos , Hibridização in Situ Fluorescente , Interfase , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade
2.
Oncol Lett ; 11(5): 3240-3246, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27123097

RESUMO

Deletions within chromosome 11q22-23, are considered among the most common chromosomal aberrations in chronic lymphocytic leukemia (CLL), and are associated with a poor outcome. In addition to the ataxia telangiectasia mutated (ATM) gene, the baculoviral IAP repeat-containing 3 (BIRC3) gene is also located in the region. BIRC3 encodes a negative regulator of the non-canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein. Disruption of BIRC3 is known to be restricted to CLL fludarabine-refractory patients. The aim of the present study was to determine the frequency of copy number changes of BIRC3 and to assess its association with two known predictors of negative CLL outcome, ATM and tumor protein 53 (TP53) gene deletions. To evaluate the specificity of BIRC3 alterations to CLL, BIRC3 copy numbers were assessed in 117 CLL patients in addition to 45 B-cell acute lymphocytic leukemia (B-ALL) patients. A commercially available multiplex ligation dependent probe amplification kit, which includes four probes for the detection of TP53 and four probes for ATM gene region, was applied. Interphase-directed fluorescence in situ hybridization was used to apply commercially available probes for BIRC3, ATM and TP53. High resolution array-comparative genomic hybridization was conducted in selected cases. Genetic abnormalities of BIRC3 were detected in 23/117 (~20%) of CLL and 2/45 (~4%) of B-ALL cases. Overall, 20 patients with CLL and 1 with B-ALL possessed a BIRC3 deletion, whilst 3 patients with CLL and 1 with B-ALL harbored a BIRC3 duplication. All patients with an ATM deletion also carried a BIRC3 deletion. Only 2 CLL cases possessed deletions in BIRC3, ATM and TP53 simultaneously. Evidently, the deletion or duplication of BIRC3 may be observed rarely in B-ALL patients. BIRC3 duplication may occur in CLL patients, for which the prognosis requires additional studies in the future. The likelihood that TP53 deletions occur simultaneously with BIRC3 and/or ATM aberrations is low. However, as ATM deletions may, but not always, associate with BIRC3 deletions, each region should be considered in the future diagnostics of CLL in order to aid treatment decisions, notably whether to treat with or without fludarabine.

3.
Leuk Res Treatment ; 2015: 489592, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697230

RESUMO

In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However, deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. Thus, other techniques have emerged such as interphase fluorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. This study was about if presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (~33%) had the TP53 deletion accompanied by an i(17q). Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. These findings may be the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q) presents an even more adverse prognostic marker than TP53 deletion alone.

5.
Expert Rev Mol Diagn ; 15(4): 517-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25664836

RESUMO

Cytogenetics and molecular cytogenetics are and will continue to be indispensable tools in cancer diagnostics. Leukemia and lymphoma diagnostics are still emphases of routine (molecular) cytogenetics and corresponding studies of solid tumors gain more and more prominence. Here, first a historical perspective of molecular tumor cytogenetics is provided, which is followed by the basic principles of the fluorescence in situ hybridization (FISH) approach. Finally the current state of molecular cytogenetics in cancer diagnostics is discussed. Nowadays routine diagnostics includes basic FISH approaches rather than multicolor-FISH. The latter together with modern high-throughput methods have their impact on research to identify new tumor-associated genomic regions.


Assuntos
Citogenética/métodos , Técnicas de Diagnóstico Molecular , Neoplasias/diagnóstico , Neoplasias/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Sondas de Ácido Nucleico
6.
Oncol Rep ; 33(2): 625-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25435396

RESUMO

Cytogenetic classification of acute lymphoblastic leukemia (ALL) is primarily based on numerical and structural chromosomal abnormalities. In T-cell ALL (T-ALL), chromosomal rearrangements are identified in up to 70% of the patients while the remaining patients show a normal karyotype. In the present study, a 16-year-old male was diagnosed with T-precursor cell ALL and a normal karyotype after standard GTG-banding, was studied retrospectively (>10 years after diagnosis) in frame of a research project by molecular approaches. In addition to molecular cytogenetics, multiplex ligation-dependent probe amplification (MLPA) and high resolution array-comparative genomic hybridization (aCGH) were also applied. Thus, the following yet unrecognized balanced chromosomal aberrations were detected: der(3)t(3;5)(p23;q31.1), der(5)t(3;5)(p23;q35.3), der(5)t(5;10)(q31.1;p12.3) and der(10)t(5;10)(q35.3;p12.3). The oncogene MLLT10 was involved in this rearrangement as was the IL3 gene; in addition, trisomy 4 was present. All of these clonal aberrations were found in 40% of the cells. Even if this complex karyotype would have been identified at the time of diagnosis, most likely no other protocol of anticancer therapy (ALL-BFM 95) would have been applied. Three months after the end of a successful 2-year treatment, the patient suffered from isolated bone marrow relapse and died of sepsis during ALL-REZ-BFM protocol treatment.


Assuntos
Cromossomos Humanos Par 4/genética , Interleucina-3/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Trissomia/genética , Adolescente , Análise Citogenética/métodos , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Translocação Genética
7.
Mol Cytogenet ; 7(1): 79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435911

RESUMO

BACKGROUND: Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by low mitotic index in leukemia. Interphase FISH (iFISH) is a way out here, however, testing many probes at the same time is protracted and expensive. Here multiplex-ligation-dependent-probe-amplification (MLPA) was used retrospectively in chronic lymphocytic leukemia (CLL) samples initially studied by banding cytogenetics and iFISH. Detection rates of iFISH and MLPA were compared and thus a cost-efficient scheme for routine diagnostics is proposed. RESULTS: Banding cytogenetics was done successfully in 67/85 samples. DNA was extracted from all 85 CLL samples. A commercially available MLPA probe set directed against 37 loci prone to be affected in hematological malignancies was applied. Besides, routine iFISH was done by commercially available probes for following regions: 11q22.3, 12p11.2-q11.1, 13q14.3, 13q34, 14q32.33 and 17p13.1. MLPA results were substantiated by iFISH using corresponding locus-specific probes. Aberrations were detected in 67 of 85 samples (~79%) applying banding cytogenetics, iFISH and MLPA. A maximum of 8 aberrations was detected per sample; however, one aberration per sample was found most frequently. Overall 163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding cytogenetics, 95 were found by MLPA (~58%) and 100 (~61%) by routine iFISH. MLPA was not able to distinguish reliably between mono- and biallelic del(13)(q14.3q14.3), which could be easily identified as well as quantified by routine iFISH. Also iFISH was superior to MLPA in samples with low tumor cell load. On the other hand MLPA detected additional aberrations in 22 samples, two of them being without any findings after routine iFISH. CONCLUSIONS: Both MLPA and routine iFISH have comparable detection rates for aberrations being typically present in CLL. As MLPA can detect also rare chromosomal aberrations it should be used as an initial test if routine cytogenetics is not possible or non-informative. Still iFISH should be used additionally to distinguish mono- from biallelic deletions and also to determine rate of mosaicism for 13q14.2 to 13q14.3. In case MLPA is negative the corresponding CLL samples should be tested at least by iFISH using the standard probe set to.

8.
Leuk Res Treatment ; 2014: 357123, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374696

RESUMO

Acute leukemia often presents with pure chromosomal resolution; thus, aberrations may not be detected by banding cytogenetics. Here, a case of 26-year-old male diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and a normal karyotype after standard GTG-banding was studied retrospectively in detail by molecular cytogenetic and molecular approaches. Besides fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and high resolution array-comparative genomic hybridization (aCGH) were applied. Thus, cryptic chromosomal aberrations not observed before were detected: three chromosomes were involved in a cytogenetically balanced occurring translocation t(2;9;18)(p23.2;p21.3;q21.33). Besides a translocation t(10;14)(q24;q11) was identified, an aberration known to be common in T-ALL. Due to the three-way translocation deletion of tumor suppressor genes CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, and MTAP/ARF/p14 in 9p21.3 took place. Additionally RB1 in 13q14 was deleted. This patient, considered to have a normal karyotype after low resolution banding cytogenetics, was treated according to general protocol of anticancer therapy (ALL-BFM 95).

9.
Exp Hematol Oncol ; 3: 28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25954594

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive subtype of chronic lymphocytic leukemia. Usually it presents in older people with a median age of 61 years. T-PLL is characterized by elevated white blood cell (WBC) count with anemia and thrombocytopenia, hepatosplenomegaly, and lymphadenopathy; less common findings are skin infiltration and pleural effusions. The most frequent chromosomal abnormalities in T-PLL include 14q11.2, chromosome 8, and 11q rearrangements. Also deletions in the short arm of a chromosome 9 are reported in ~30% of T-PLL together with other aberrations. Here we report a childhood T-PLL case with a de novo del(9)(p13) as sole acquired anomaly leading to monosomy of the tumor suppressor gene CDKN2A (cyclin-dependent kinase inhibitor 2A). Also, to the best of our knowledge this is the first case of a childhood T-PLL with this aberration.

10.
Mol Cytogenet ; 6(1): 33, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23985162

RESUMO

BACKGROUND: Plasma cell leukemia (PCL) is a rare lymphoproliferative disorder, accounting for 1-2% of all plasma cell neoplasms, characterized by the presence of >2 × 109/l of plasma cells circulating in the peripheral blood, and exists in two forms: primary PCL (pPCL, 60% of the cases), and secondary PCL (sPCL), the latter being a leukemic transformation in patients with a previously diagnosed multiple myeloma. PCL is an aggressive disease with poor prognosis and a short median survival of 7 months. RESULTS: Here, we report a pPCL case with hepatosplenomegaly, anemia, thrombocytopenia, fever, fatigue, weight loss, and plasma cell count up to 60% in peripheral blood and 80% in bone marrow. Immunophenotype was compatible with PCL. A del(9)(p22.3) was characterized using banding cytogenetics and array-proven multicolor banding (aMCB), the latter being of enormous significance to characterize breakpoint regions in detail. CONCLUSION: To the best of our knowledge, this is the first report of pPCL associated with a partially monosomy 9pter to 9p22.3 as a sole chromosomal abnormality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA