Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(14): 9062-9075, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38993070

RESUMO

BACKGROUND: Mercuric chloride (HgCl2) is poisonous to humans and animals and typically damages the nervous system and other organs. Mercuric chloride exposition disclosed to initiation of oxidative stress pathway can result in a defect in male fertility and testis tissue. Synthesized selenium nanoparticles (SeNPs) were characterized with a diameter range minimal than 100 nm, having the effective sets of the biological matter. The present study aimed to evaluate the effect of biosynthesized SeNPs, prepared by leek extract on Wistar rats' testicles and brain. METHODS: Thirty-five Wistar male rats (120-150 g) were randomly split into five groups (n = 7), orally ingested with leek aqueous extract loaded on SeNPs, and then the animals were administered with mercury II chloride (HgCl2) to induce testis injury and damage the nervous system. RESULTS: The used dose of mercuric chloride led to oxidative stress damage in the testis of the rats which was evidenced by a decrease in testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and proliferating cell nuclear antigen (PCNA) levels, and an increase in nuclear factor-kappa B (NF-κB) and caspase-3. Also, HgCl2 decreased the levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in the brains of rats. In addition, A decrease was observed in the levels of antioxidant markers, B-cell lymphoma-2 (Bcl-2), as well as an increase in malondialdehyde (MDA), nitric oxide (NO), NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and Bax in both testes and brains. Pre-treatment with leek extract loaded on SeNPs significantly ameliorated testosterone, LH, FSH, PCNA and caspase-3 levels in the testis and DA, 5-HT, NE and BDNF in brains. Although the contents of MDA, NO, TNF-α, IL-1ß, NF-κB and Bax decreased significantly in both. glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and Bcl-2 levels were significantly improved in both organs. CONCLUSION: Our findings suggest that treatment with aqueous leek extract loaded on SeNPs may offer promising prospects for the advancement of anti-inflammation activity against testis injury and also have a very key role in neurobehavioral alterations as a result of mercury toxicity. © 2024 Society of Chemical Industry.


Assuntos
Lesões Encefálicas , Cloreto de Mercúrio , Nanopartículas , Estresse Oxidativo , Extratos Vegetais , Ratos Wistar , Selênio , Testículo , Animais , Masculino , Testículo/efeitos dos fármacos , Testículo/metabolismo , Ratos , Cloreto de Mercúrio/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Selênio/química , Selênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/prevenção & controle , Lesões Encefálicas/metabolismo , Lesões Encefálicas/etiologia , Lesões Encefálicas/tratamento farmacológico , Nanopartículas/química , Allium/química , NF-kappa B/metabolismo , Testosterona/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/química , Hormônio Luteinizante/metabolismo , Humanos , Hormônio Foliculoestimulante/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo
2.
Ultrason Sonochem ; 107: 106923, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815489

RESUMO

The utilization of metallic nanoparticles in bio-nanofabrication holds significant potential in the field of applied research. The current study applied and compared integrated ultrasonic-microwave-assisted extraction (US/MICE), ultrasonic extraction (USE), microwave-assisted extraction (MICE), and maceration (MAE) to extract total phenolic content (TPC). In addition, the study examined the antioxidant activity of Commiphora gileadensis (Cg) leaf. The results demonstrated that the TPC of US/MICE exhibited the maximum value at 59.34 ± 0.007 mg GAE/g DM. Furthermore, at a concentration of 10 µg/mL, TPC displayed a significant scavenging effect on DPPH (56.69 %), with an EC50 (6.48 µg/mL). Comprehensive metabolite profiling of the extract using UPLC-qTOF-MS/MS was performed to identify active agents. A total of 64 chromatographic peaks were found, out of which 60 were annotated. The most prevalent classes of metabolites found were polyphenols (including flavonoids and lignans), organic compounds and their derivatives, amides and amines, terpenes, and fatty acid derivatives. Transmission electron microscopy (TEM) revealed the aggregate size of the synthesized nanoparticles and the spherical shape of C. gileadensis-mediated silver nanoparticles (Cg-AgNPs). The nanoparticles had a particle size ranging from 7.7 to 42.9 nm. The Cg-AgNPs exhibited more inhibition zones against S. aureus and E. coli. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cg-extract, AgNPs, and Cg-AgNPs were also tested. This study demonstrated the feasibility of using combined ultrasonic-microwave-assisted extraction to separate and extract chemicals from C. gileadensis on a large scale. These compounds have potential use in the pharmaceutical industry. Combining antibacterial and biocompatible properties in materials is vital for designing new materials for biomedical applications. Additionally, the results showed that the biocompatibility of the Ag-NPs using C. gileadensis extracts demonstrated outstanding antibacterial properties.


Assuntos
Antibacterianos , Commiphora , Nanopartículas Metálicas , Micro-Ondas , Extratos Vegetais , Folhas de Planta , Prata , Ondas Ultrassônicas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Prata/química , Commiphora/química , Nanopartículas Metálicas/química , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Testes de Sensibilidade Microbiana , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Técnicas de Química Sintética
3.
BMC Plant Biol ; 24(1): 472, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811894

RESUMO

Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.


Assuntos
Manitol , Tolerância ao Sal , Plântula , Trealose , Triticum , Triticum/efeitos dos fármacos , Triticum/fisiologia , Triticum/metabolismo , Trealose/metabolismo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Manitol/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Flavonoides/metabolismo , Fenóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA