Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8275, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585158

RESUMO

Although KIT-mutant GISTs can be effectively treated with tyrosine kinase inhibitors (TKIs), many patients develop resistance to imatinib mesylate (IM) as well as the FDA-approved later-line agents sunitinib, regorafenib and ripretinib. Resistance mechanisms mainly involve secondary mutations in the KIT receptor tyrosine kinase gene indicating continued dependency on the KIT signaling pathway. The fact that the type of secondary mutation confers either sensitivity or resistance towards TKIs and the notion that secondary mutations exhibit intra- and intertumoral heterogeneity complicates the optimal choice of treatment in the imatinib-resistant setting. Therefore, new strategies that target KIT independently of its underlying mutations are urgently needed. Homoharringtonine (HHT) is a first-in-class inhibitor of protein biosynthesis and is FDA-approved for the treatment of chronic myeloid leukemia (CML) that is resistant to at least two TKIs. HHT has also shown activity in KIT-mutant mastocytosis models, which are intrinsically resistant to imatinib and most other TKIs. We hypothesized that HHT could be effective in GIST through downregulation of KIT expression and subsequent decrease of KIT activation and downstream signaling. Testing several GIST cell line models, HHT led to a significant reduction in nascent protein synthesis and was highly effective in the nanomolar range in IM-sensitive and IM-resistant GIST cell lines. HHT treatment resulted in a rapid and complete abolishment of KIT expression and activation, while KIT mRNA levels were minimally affected. The response to HHT involved induction of apoptosis as well as cell cycle arrest. The antitumor activity of HHT was confirmed in a GIST xenograft model. Taken together, inhibition of protein biosynthesis is a promising strategy to overcome TKI resistance in GIST.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Mepesuccinato de Omacetaxina/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo
2.
Sci Rep ; 10(1): 5178, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198455

RESUMO

The majority of gastrointestinal stromal tumors (GISTs) are driven by oncogenic KIT signaling and can therefore be effectively treated with the tyrosine kinase inhibitor (TKI) imatinib mesylate. However, most GISTs develop imatinib resistance through secondary KIT mutations. The type of resistance mutation determines sensitivity to approved second-/third-line TKIs but shows high inter- and intratumoral heterogeneity. Therefore, therapeutic strategies that target KIT independently of the mutational status are intriguing. Inhibiting the ubiquitin-proteasome machinery with bortezomib is effective in GIST cells through a dual mechanism of KIT transcriptional downregulation and upregulation of the pro-apoptotic histone H2AX but clinically problematic due to the drug's adverse effects. We therefore tested second-generation inhibitors of the 20S proteasome (delanzomib, carfilzomib and ixazomib) with better pharmacologic profiles as well as compounds targeting regulators of ubiquitination (b-AP15, MLN4924) for their effectiveness and mechanism of action in GIST. All three 20S proteasome inhibitors were highly effective in vitro and in vivo, including in imatinib-resistant models. In contrast, b-AP15 and MLN4924 were only effective at high concentrations or had mostly cytostatic effects, respectively. Our results confirm 20S proteasome inhibitors as promising strategy to overcome TKI resistance in GIST, while highlighting the complexity of the ubiquitin-proteasome machinery as a therapeutic target.


Assuntos
Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Compostos de Boro/farmacologia , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais/efeitos dos fármacos , Treonina/análogos & derivados , Treonina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 8(3): 4471-4483, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965460

RESUMO

Most gastrointestinal stromal tumors (GISTs) are caused by activating mutations of the KIT receptor tyrosine kinase. The small molecule inhibitor imatinib mesylate was initially developed to target the ABL1 kinase, which is constitutively activated through chromosomal translocation in BCR-ABL1-positive chronic myeloid leukemia. Because of cross-reactivity of imatinib against the KIT kinase, the drug is also successfully used for the treatment of GIST. Although inhibition of KIT clearly has a major role in the therapeutic response of GIST to imatinib, the contribution of concomitant inhibition of ABL in this context has never been explored. We show here that ABL1 is expressed in the majority of GISTs, including human GIST cell lines. Using siRNA-mediated knockdown, we demonstrate that depletion of KIT in conjunction with ABL1 - hence mimicking imatinib treatment - leads to reduced apoptosis induction and attenuated inhibition of cellular proliferation when compared to depletion of KIT alone. These results are explained by an increased activity of the AKT survival kinase, which is mediated by the cyclin-dependent kinase CDK2, likely through direct phosphorylation. Our results highlight that distinct inhibitory properties of targeted agents can impede antitumor effects and hence provide insights for rational drug development. Novel KIT-targeted agents to treat GIST should therefore comprise an increased specificity for KIT while at the same time displaying a reduced ability to inhibit ABL1.


Assuntos
Neoplasias Gastrointestinais/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Mesilato de Imatinib/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Neoplasias Gastrointestinais/tratamento farmacológico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-kit/genética , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA