Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 125: 105850, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533581

RESUMO

Nucleoside precursors and nucleoside analogs occupy an important place in the treatment of viral respiratory pathologies, especially during the current COVID-19 pandemic. From this perspective, the present study has been designed to explore and evaluate the synthesis and spectral characterisation of 5́-O-(lauroyl) thymidine analogs 2-6 with different aliphatic and aromatic groups through comprehensive in vitro antimicrobial screening, cytotoxicity assessment, physicochemical aspects, molecular docking and molecular dynamics analysis, along with pharmacokinetic prediction. A unimolar one-step lauroylation of thymidine under controlled conditions furnished the 5́-O-(lauroyl) thymidine and indicated the selectivity at C-5́ position and the development of thymidine based potential antimicrobial analogs, which were further converted into four newer 3́-O-(acyl)-5́-O-(lauroyl) thymidine analogs in reasonably good yields. The chemical structures of the newly synthesised analogs were ascertained by analysing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests against five bacteria and two fungi, along with the prediction of activity spectra for substances (PASS), indicated promising antibacterial functionality for these thymidine analogs compared to antifungal activity. In support of this observation, molecular docking experiments have been performed against the main protease of SARS-CoV-2, and significant binding affinities and non-bonding interactions were observed against the main protease (6LU7, 6Y84 and 7BQY), considering hydroxychloroquine (HCQ) as standard. Moreover, the 100 ns molecular dynamics simulation process was performed to monitor the behaviour of the complex structure formed by the main protease under in silico physiological conditions to examine its stability over time, and this revealed a stable conformation and binding pattern in a stimulating environment of thymidine analogs. Cytotoxicity determination confirmed that compounds were found less toxic. Pharmacokinetic predictions were investigated to evaluate their absorption, distribution, metabolism and toxic properties, and the combination of pharmacokinetic and drug-likeness predictions has shown promising results in silico. The POM analysis shows the presence of an antiviral (O1δ-, O2δ-) pharmacophore site. Overall, the current study should be of great help in the development of thymidine-based, novel, multiple drug-resistant antimicrobial and COVID-19 drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antibacterianos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Inibidores de Proteases/química , Timidina/farmacologia , Proteínas não Estruturais Virais/metabolismo
2.
R Soc Open Sci ; 8(10): 211003, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34659780

RESUMO

Oil pollution is of increasing concern for environmental safety and the use of microbial surfactants in oil remediation has become inevitable for their efficacy and ecofriendly nature. In this work, biosurfactants of bacteria isolated from oil-contaminated soil have been characterized. Four potent biosurfactant-producing strains (SD4, SD11, SD12 and SD13) were selected from 27 isolates based on drop collapse assay and emulsification index, and identified as species belonging to Bacillus, Burkholderia, Providencia and Klebsiella, revealed from their 16S rRNA gene-based analysis. Detailed morphological and biochemical characteristics of each selected isolate were determined. Their growth conditions for maximum biosurfactant production were optimized and found quite similar among the four isolates with a pH of 3.0 and temperature 37°C after 6 or 7 days of growth on kerosene. The biosurfactants of SD4, SD11 and SD12 appeared to be glycolipids and that of SD13 a lipopeptide. Emulsification activity of most of the biosurfactants was stable at low and high temperatures (4-100°C), a wide range of pH (2-10) and salt concentrations (2-7% NaCl). Each biosurfactant showed antimicrobial activity against two or more pathogenic bacteria. The biosurfactants were well-capable of emulsifying kerosene, diesel and soya bean, and could efficiently degrade diesel.

3.
Cancer Sci ; 107(9): 1321-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27324116

RESUMO

Pygopus2 (Pygo2) is a component of the Wnt signaling pathway, which is required for ß-catenin mediated transcription. Plant homeodomain (PHD) finger in Pygo2 intercalates the methylated histone 3 (H3K4me) tail and HD1 domain of BCL9 that binds to ß-catenin. Thus, PHD finger may be a potential target for the logical design of an anti-cancer drug. Here, we found that Spiro[2H-naphthol[1,2-b]pyran-2,4'-piperidine]-1'ethanol,3,4-dihydro-4-hydroxy-α-(6-methyl-1H-indol-3-yl)) termed JBC117 interacts with D339, A348, R356, V376 and A378 in PHD corresponding to the binding sites with H3K4me and/or HD1, and has strong anti-cancer effects. For colon (HCT116) and lung (A549) cancer cell lines, IC50 values were 2.6 ± 0.16 and 3.3 ± 0.14 µM, respectively, while 33.80 ± 0.15 µM for the normal human fibroblast cells. JBC117 potently antagonized the cellular effects of ß-catenin-dependent activity and also inhibited the migration and invasion of cancer cells. In vivo studies showed that the survival time of mice was significantly prolonged by the subcutaneous injection of JBC117 (10 mg/kg/day). In conclusion, JBC117 is a novel anti-cancer lead compound targeting the PHD finger of Pygo2 and has a therapeutic effect against colon and lung cancer.


Assuntos
Antineoplásicos/química , Desenho de Fármacos , Proteínas de Homeodomínio/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Domínios e Motivos de Interação entre Proteínas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Camundongos Nus , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/química , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA