Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 333: 122062, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37330185

RESUMO

Rapid growth and industrialization have become a major threat to water contamination with carcinogenic chlorinated hydrocarbons such as trichloroethylene (TCE). Therefore, this study aims to assess the TCE degradation performance through advanced oxidation process (AOP) using catalyst FeS2 in combination with oxidants persulfate (PS), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) in PS/FeS2, PMS/FeS2, and H2O2/FeS2 systems, respectively. TCE concentration was analyzed using gas chromatography (GC). The results found the trend for TCE degradation by the systems was PMS/FeS2>PS/FeS2>H2O2/FeS2 (99.84, 99.63, and 98.47%, respectively). Degradation of TCE was analyzed at different pH ranges (3-11) and maximum degradation at a wide pH range was observed for PMS/FeS2. The analysis using electron paramagnetic resonance (EPR) and scavenging tests explored responsible reactive oxygen species (ROS) for TCE degradation and found that HO• and SO4-• played the most effective role. The results of catalyst stability showed PMS/FeS2 system the most promising with the stability of 99, 96 and 50% for the first, second and third runs, respectively. The system was also found efficient in the presence of surfactants (TW-80, TX-100, and Brij-35) in ultra-pure water (89.41, 34.11, 96.61%, respectively), and actual groundwater (94.37, 33.72, and 73.48%, respectively), but at higher reagents dosages (5X for ultra-pure water and 10X actual ground water). Furthermore, it is demonstrated that the oxic systems have degradation capability for other TCE-like pollutants. In conclusion, due to its high stability, reactivity, and cost-effectiveness, PMS/FeS2 system could be a better choice for the treatment of TCE contaminated water and can be beneficial for field application.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Peróxido de Hidrogênio/análise , Ferro/química , Tricloroetileno/análise , Água/análise , Oxirredução , Poluentes Químicos da Água/análise , Água Subterrânea/química
2.
Water Environ Res ; 94(4): e10710, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35373447

RESUMO

Few researches have focused on the role of nanoscale zero-valent iron (nZVI) in Fenton-like process for polycyclic aromatic hydrocarbons (PAHs) removal. In this study, the naphthalene (NAP) degradation tests in ultrapure water showed that nZVI addition could enhance NAP degradation from 79.7% to 99.0% in hydrogen peroxide (H2 O2 )/Fe (II)/nZVI/NAP system at the molar ratio of 10/5/3/1, showing the excellent role of nZVI in promoting NAP removal. Multiple linear regression analysis found that the correlation coefficient between H2 O2 consumption and NAP degradation was converted from -9.17 to 0.48 with nZVI and 1-mM H2 O2 , indicating that nZVI could decompose H2 O2 more beneficially for NAP degradation. Multiple Fe (II)-dosing and iron leaching tests revealed that nZVI could gently liberate Fe (II) and promote Fe (II)/Fe (III) redox cycle to enhance the NAP degradation. When the H2 O2 /Fe (II)/nZVI/NAP molar ratios of 10/5/3/1 and 50/25/15/1 were applied in the simulated NAP contaminated actual groundwater and soil slurry, respectively, 75.0% and 82.9% of NAP removals were achieved. Based on the major degradation intermediates detected by GC/MS, such as 1,4-naphthalenedione, cinnamaldehyde, and o-phthalaldehyde, three possible NAP degradation pathways were proposed. This study provided the applicable potential of nZVI in Fenton process for PAHs contaminated groundwater and soil remediation. PRACTITIONER POINTS: nZVI enhanced the NAP degradation in Fenton-like process. Three schemes of NAP degradation pathway were proposed. nZVI performed well in the remediation of the simulated NAP contamination.

3.
Environ Sci Pollut Res Int ; 28(3): 3121-3135, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32902746

RESUMO

In this study, the enhanced trichloroethylene (TCE) degradation performance was investigated by polyvinyl alcohol coated calcium peroxide nanoparticles (PVA@nCP) as an oxidant in Fe(II)-based catalytic systems. The nanoscale iron sulfide (nFeS), having an average particle size of 115.4 nm, was synthesized in the laboratory and characterized by SEM, TEM, HR-TEM along with EDS elemental mapping, XRD, FTIR, ICP-OES, and XPS techniques. In only ferrous iron catalyzed system (PVA@nCP/Fe(II)), TCE degradation was recorded at 58.9% in 6 h. In comparison, this value was increased to 97.5% or 99.7% with the addition of citric acid (CA) or nFeS in PVA@nCP/Fe(II) system, respectively. A comparative study was performed with optimum usages of chemical reagents in both PVA@nCP/Fe(II)/CA and PVA@nCP/Fe(II)/nFeS systems. Further, the probe compounds tests and electron paramagnetic resonance (EPR) analysis confirmed the generation of reactive oxygen species. The scavenging experiments elucidated the dominant role of HO• to TCE degradation, particularly in PVA@nCP/Fe(II)/nFeS system. Both CA and nFeS strengthened PVA@nCP/Fe(II) system, but displayed completely different mechanisms in the enhancement of active radicals generation; hence, their different contribution to TCE degradation. The acidic environment was favorable for TCE degradation, and a high concentration of HCO3- inhibited TCE removal in both systems. Conclusively, compared to PVA@nCP/Fe(II)/nFeS system, PVA@nCP/Fe(II)/CA system resulted in encouraging TCE degradation outcomes in actual groundwater, showing great potential for prolonged benefits in the remediation of TCE polluted groundwater. Graphical abstract.


Assuntos
Água Subterrânea , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Catálise , Ácido Cítrico , Compostos Ferrosos , Oxirredução , Peróxidos , Álcool de Polivinil , Poluentes Químicos da Água/análise
4.
Water Sci Technol ; 82(5): 998-1008, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33031076

RESUMO

The feasibility of an advanced oxidation process based upon sodium persulfate (SPS) activated simultaneously by heat (50 °C) and nanoscale zero-valent iron (nZVI) on benzene removal was investigated. The experimental results strongly showed the synergistic effect of thermal and nZVI activation to SPS and benzene removal was enhanced with the increase of SPS/nZVI/benzene molar ratio. Specifically, 94% of benzene could be removed in 1 hr at 50 °C at the SPS/nZVI/benzene molar ratio of 10/5/1. The radical scavenger tests and electron paramagnetic resonance (EPR) analysis confirmed that SO4•- was the predominant species contributing to benzene degradation. Further, the effects of the solution matrix on benzene elimination were investigated. The results indicated that benzene destruction in the thermally activated SPS/nZVI system performed better under acidic conditions, and the high concentration of both Cl- and HCO3 - had adverse effects on benzene elimination. The test for the performance of benzene degradation in the actual groundwater demonstrated that benzene could be degraded entirely at SPS/nZVI/benzene molar ratio of 40/40/1 at 50 °C, indicating that the synergistic catalysis of thermal and nZVI activation to SPS is exploitable and the thermally activated SPS/nZVI system can be applicable to the remediation of benzene contaminated groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Benzeno , Ferro , Oxirredução , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA