Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(7): 103817, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759568

RESUMO

Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790630

RESUMO

Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.

3.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608882

RESUMO

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Assuntos
Cádmio , Patos , Microplásticos , Estresse Oxidativo , Pâncreas , Animais , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Microplásticos/toxicidade , Fibrose , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Phytomedicine ; 125: 155337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241915

RESUMO

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Assuntos
Acetilcisteína , Cádmio , Flavonoides , Camundongos , Animais , Acetilcisteína/farmacologia , Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Inflamação/metabolismo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico
5.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247538

RESUMO

Cadmium (Cd) is a major health concern globally and can accumulate and cause damage in the liver for which there is no approved treatment. Baicalin and N-acetylcysteine (NAC) have been found to have protective effects against a variety of liver injuries, but it is not clear whether their combined use is effective in preventing and treating Cd-induced lipid accumulation. The study found that Cd increased the production of mitochondrial reactive oxygen species (mROS) and elevated the level of chaperone-mediated autophagy (CMA). Interestingly, mROS-mediated CMA exacerbates the Cd-induced inhibition of lipophagy. Baicalin and NAC counteracted inhibition of lipophagy by attenuating Cd-induced CMA, suggesting an interplay between CMA elevation, mitochondrial destruction, and mROS formation. Maintaining the stability of mitochondrial structure and function is essential for alleviating Cd-induced lipid accumulation in the liver. Choline is an essential component of the mitochondrial membrane and is responsible for maintaining its structure and function. Mitochondrial transcriptional factor A (TFAM) is involved in mitochondrial DNA transcriptional activation and replication. Our study revealed that the combination of baicalin and NAC can regulate choline metabolism through TFAM and thereby maintain mitochondrial structure and functionality. In summary, the combination of baicalin and NAC plays a more beneficial role in alleviating Cd-induced lipid accumulation than the drug alone, and the combination of baicalin and NAC can stabilize mitochondrial structure and function and inhibit mROS-mediated CMA through TFAM-choline, thereby promoting lipophagy to alleviate Cd-induced lipid accumulation.

6.
J Hazard Mater ; 465: 133151, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113736

RESUMO

Cadmium (Cd) is an important environmental pollutant. Herein, we discovered a new way of lipid accumulation, where lipid droplets can be transferred across cells. In this study, mice and AML12 cells were used to establish models of Cd poisoning. After Cd treatment, the level of TFAM was reduced, thereby regulating the reconstitution of the cytosolic actin filament network. MYH9 is a myosin involved in cell polarization, migration, and movement of helper organelles. Rab18 is a member of the Rab GTPase family, which localizes to lipid droplets and regulates lipid drop dynamics. In this study, we found that Cd increases the interaction between MYH9 and Rab18. However, TFAM overexpression alleviated the increase in Cd-induced interaction between MYH9 and Rab18, thereby reducing the transfer of intercellular lipid droplets and the accumulation of intracellular lipids. Through a co-culture system, we found that the transferred lipid droplets can act as a signal to form an inflammatory storm-like effect, and ACSL4 can act as an effector to transfer lipid droplets and promote lipid accumulation in surrounding cells. These results suggest that TFAM can be used as a new therapeutic target for Cd-induced lipid accumulation in the liver.


Assuntos
Cádmio , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Cádmio/metabolismo , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Lipídeos , Metabolismo dos Lipídeos , Fígado/metabolismo
7.
Biol Trace Elem Res ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817045

RESUMO

Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.

8.
Cell Mol Biol Lett ; 28(1): 87, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884867

RESUMO

Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Cádmio , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fígado
9.
Chemosphere ; 344: 140372, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802476

RESUMO

Microplastics (MPs) and cadmium (Cd) are important environmental pollutants, that damage the liver. However, the effect and mechanism of combined Cd and MPs exposure on liver fibrosis are still largely unknown. In this study investigated, Cd + MPs exposure increased superoxide anion production and promoted extracellular ATP release compared with exposure to Cd or MPs individually. Cd + MPs increased inflammatory cell infiltration, activated the P2X7-NLRP3 signaling pathway, and promoted inflammatory factor release. Cd + MPs aggravated Cd- or MPs-induced liver fibrosis and induced liver inflammation. In AML12/HSC-T6 cell in vitro poisoning model, exposure of AML12 cells to Cd + MPs increased the opening of connexin hemichannels and promoted extracellular ATP release. Treatment of HSC-T6 cells with the supernatant of AML12 cells exposed to Cd + MPs significantly promoted HSC-T6 cell activation. Treatment of HSC-T6 cells with different concentrations of ATP produced similar results. TAT-Gap19TFA, an inhibitor of connexin hemichannels, significantly inhibited the ATP release and activation of Cd + MPs-treated HSC-T6 cells. Finally, the expression of the ATP receptor P2X7 was silenced in HSC-T6 cells, which significantly inhibited their activation. In conclusion, exposure to Cd + MPs promoted liver fibrosis through the ATP-P2X7 pathway and synergistically affected liver inflammation and fibrosis.


Assuntos
Cádmio , Microplásticos , Humanos , Cádmio/toxicidade , Plásticos , Cirrose Hepática/induzido quimicamente , Conexinas , Trifosfato de Adenosina
10.
Environ Sci Pollut Res Int ; 30(45): 101064-101074, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37646926

RESUMO

Autophagy plays a dynamic role in spermatozoa development during spermatogenesis. However, the disruption of autophagic flux induces cell death under metal toxicity and severe oxidative stress. Therefore, we hypothesized that cadmium-induced autophagy might be involved in this mechanism. To verify this hypothesis, we studied cadmium-induced cellular evidence of autophagic-associated spermiophagy within the testis. In the present study, treatment with cadmium caused nuclear depressive disorders and vacuolated mitochondrial damage of Sertoli cells. In addition, spermiophagy through the cellular evidence of spermatozoa phagocytosis, the high lysosomal activity (lysosome engulfment and phagolysosome), and autophagy activity (autolysosome and autophagosome) were observed in the Sertoli cells. The immunohistochemistry of lysosomal membrane protein (LAMP2) to target the phagocytosis of spermatozoa revealed that the immunoreactivity of LAMP2 was overstimulated in the luminal compartment of testis's seminiferous tubules. In addition, the immunohistochemistry and immunofluorescence of autophagy-related protein and microtubule-associated light chain (LC3) results showed the strong immunoreactivity and immunosignaling of LC3 in the Sertoli cells of the testis. Moreover, cadmium caused the overactivation of the expression level of autophagy-related proteins, autophagy-related gene (ATG7), (ATG5), beclin1, LC3, sequestosome 1 (P62), and LAMP2 which were confirmed by western blotting. In summary, this study demonstrated that hazards related to cadmium-induced autophagic-associated spermiophagy with the disruption of autophagic flux, providing new insights into the toxicity of cadmium in mammals and representing a high risk to male fertility.


Assuntos
Autofagia , Cádmio , Animais , Masculino , Cádmio/toxicidade , Cádmio/metabolismo , Lisossomos/metabolismo , Morte Celular , Espermatogênese , Mamíferos
11.
Poult Sci ; 102(8): 102835, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37343350

RESUMO

Cadmium (Cd) is an important environmental pollutant that causes liver damage and induces nonalcoholic fatty liver disease (NAFLD). NAFLD is a fat accumulation disease and has significant effects on the body. Melatonin (Mel) is an endogenous protective molecule with antioxidant, anti-inflammatory, antiobesity, and antiaging effects. However, whether Mel can alleviate Cd-induced NAFLD and its mechanism remains unclear. First, in vivo, we found that Mel maintained mitochondrial structure and function, inhibited oxidative stress, and reduced Cd-induced liver injury. In addition, Mel alleviated lipid accumulation in the liver induced by Cd. In this process, Mel inhibits fatty acid production and promotes fatty acid oxidation. Interestingly, Mel regulated PPAR-α expression and alleviated Cd-induced autophagy blockade. In vitro model, the oil Red O staining, and WB results showed that Mel alleviated Cd-induced lipid accumulation. In addition, RAPA was used to activate autophagy to alleviate Cd-induced lipid accumulation, and TG was used to block autophagy flux to aggravate Cd-induced autophagy accumulation. After knocking down PPAR-α, the autophagosome fusion with lysosomes, and autophagic flux was inhibited and increased Cd-induced lipid accumulation. Mel alleviates mitochondrial damage and oxidative stress, and attenuates Cd-induced NAFLD by restoring the expression of PPAR-α and restoring autophagy flux.


Assuntos
Melatonina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/veterinária , Cádmio/toxicidade , Cádmio/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Patos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Galinhas/metabolismo , Autofagia , Fígado/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Lipídeos
12.
Aging (Albany NY) ; 15(10): 4096-4107, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37220720

RESUMO

Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) expression level were confirmed by Western blotting. These results provide rich information regarding how cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium on nano-scale exosomes secretion interacting with spermatozoa.


Assuntos
Cádmio , Corpos Multivesiculares , Masculino , Humanos , Corpos Multivesiculares/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Túbulos Seminíferos , Espermatogênese , Espermatozoides
13.
J Agric Food Chem ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023393

RESUMO

The imbalance between osteogenesis and osteoclastogenesis is a feature of bone metabolic disease. Cadmium (Cd) exposure causes human bone loss and osteoporosis (OP) through bioaccumulation of the food chain. However, the impact of Cd on bone tissues and the underlying molecular mechanisms are not well-characterized. In the current study, we found that the Cd concentration in bone tissues of OP patients was higher than normal subjects; meanwhile, the nuclear silent information regulator of transcription 1 (SIRT1) protein expression level was significantly decreased, which is a new star molecule to treat OP. It is further revealed that SIRT1 activation markedly reprograms bone metabolic and stress-response pathways that incline with osteoblast (OB) apoptosis. Suppressing reactive oxygen species (ROS) release with N-acetyl-l-cysteine (NAC) abolished Cd-induced reduction of SIRT1 protein, deacetylation of P53, OB apoptosis, and attenuated OP. Conversely, overexpression of SIRT1 suppressed Cd-induced ROS release. SIRT1 overexpression in vivo and in vitro dampened PGC-1α protein, acetylation of P53 at lysine 382, and caspase-dependent apoptosis. These results reveal that ROS/SIRT1 controls P53 acetylation and coordinates OB apoptosis involved in the onset of OP.

14.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674718

RESUMO

Our previous studies have confirmed that cadmium (Cd) exposure causes hepatotoxicity; it also induces autophagy and blocks the autophagy flux. Therefore, we hypothesized that Cd hepatotoxicity could be alleviated through nutritional intervention. Taurine (Tau) has various biological functions such as acting as an antioxidant, acting as an anti-inflammatory, and stabilizing cell membranes. In order to explore the protective effect and internal mechanism of Tau on Cd-induced hepatotoxicity, normal rat liver cell line BRL3A cells were treated with Cd alone or in combination with Tau to detect cell injury and autophagy-related indexes in this study. We found that Tau can alleviate Cd-induced cell-proliferation decline and morphological changes in the cell. In addition, Tau activates autophagy and alleviates the blockage of Cd-induced autophagy flux. In this process, lysosome acidification and degradation were enhanced, and autophagosomes were further fused with lysosomes. Then, we found that Tau alleviated autophagic flux block by promoting the transfer of membrane fusion proteins STX17 and SNAP29 to autophagosomes and the translocation of VAMP8 to lysosomes, which in turn attenuated the hepatocyte injury induced by Cd exposure. This will further reveal the hepatotoxicity mechanism of Cd and provide the theoretical basis for the prevention and treatment of Cd poisoning.


Assuntos
Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Cádmio/metabolismo , Autofagia , Autofagossomos/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675029

RESUMO

Osteoprotegerin (OPG) is a new member of the tumor necrosis factor (TNF) receptor superfamily, which can inhibit the differentiation and activity of osteoclasts by binding to nuclear factor kappa B receptor activator (RANK) competitively with nuclear factor kappa B receptor activator ligand (RANKL). The previous experiments found that OPG can induce apoptosis of mature osteoclasts in vitro, which can inhibit the activity of mature osteoclasts, thereby exerting its role in protecting bone tissue. In addition, pyroptosis is a new type of cell death that is different from apoptosis. It is unclear whether OPG can induce mature osteoclast pyroptosis and thereby play its role in protecting bone tissue. In this study, the results showed that compared with the control group, the survival rate of osteoclasts in the OPG group was significantly reduced, and the contents of IL-1ß, IL-18, and LDH in the supernatant both increased. Many osteoclast plasma membranes were observed to rupture in bright fields, and OPG induced loss of their morphology. Flow cytometry was used to analyze the pyroptosis rate; OPG significantly increased the osteoclast pyroptosis rate. To further reveal the mechanism of OPG-induced osteoclast pyroptosis, we examined the expression level of pyroptosis-related genes and proteins, and the results found that OPG increased the expression of NLRP3, ASC, caspase-1, and GSDMD-N compared with the control group. In summary, OPG can induce osteoclast pyroptosis, and its mechanism is related to the expression levels of ASC, NLRP3, caspase 1 and GSDMD, which were included in the classical pathway of pyroptosis.


Assuntos
Osteoclastos , Osteoprotegerina , Osteoclastos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligante RANK/metabolismo
16.
Cells ; 11(22)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429028

RESUMO

Cadmium is a heavy toxic metal with unknown biological functions in the human body. Over time, cadmium accretion in the different visceral organs (liver, lungs, kidney, and testis) is said to impair the function of these organs, which is associated with a relatively long biological half-life and a very low rate of excretion. Recently studies have revealed that the testes are highly sensitive to cadmium. In this review, we discussed the adverse effect of cadmium on the development and biological functions of the testis. The Sertoli cells (SCs), seminiferous tubules, and Blood Testis Barrier are severely structurally damaged by cadmium, which results in sperm loss. The development and function of Leydig cells are hindered by cadmium, which also induces Leydig cell tumors. The testis's vascular system is severely disturbed by cadmium. Cadmium also perturbs the function of somatic cells and germ cells through epigenetic regulation, giving rise to infertile or sub-fertile males. In addition, we also summarized the other findings related to cadmium-induced oxidative toxicity, apoptotic toxicity, and autophagic toxicity, along with their possible mechanisms in the testicular tissue of different animal species. Consequently, cadmium represents a high-risk factor for male fertility.


Assuntos
Cádmio , Epigênese Genética , Animais , Masculino , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Sêmen/metabolismo , Testículo/metabolismo , Fertilidade
17.
J Biomol Struct Dyn ; 40(22): 12239-12247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463210

RESUMO

Capreomycin is a second line antibiotic used for the treatment of drug resistant Tuberculosis (TB), primary reason of death from a solo infectious organism, Mycobacterium tuberculosis (M.tb). Capreomycin targets the ribosome of bacteria and is known to bind at the interface where the large and small ribosomal subunits interact in M.tb using an S-Adenosyl Methionine (SAM) dependent methyltransferase, TlyA (Rv1794). Besides the methyltransferase activity, TlyA has also been found to show substantial haemolytic activity. The dual activity of TlyA highlights its crucial role in pathogenesis and virulence of M.tb. In the present study, docking and molecular dynamics (MD) simulations were carried out to explore the impact of mutations in a conserved SAM binding motif, 90GASTG94, on the affinity of TlyA enzyme for SAM. Two already reported mutations, A91E and S92L, and the remaining wild type residues, Gly90, Thr93, Gly94 mutated to alanine were taken into consideration resulting in a total of six systems, wild type + SAM, G90A + SAM, A91E + SAM, S92L + SAM, T93A + SAM and G94A + SAM that were subjected to 100 ns MD simulations. Docking scores and MD simulations analyses revealed that in contrast to wild type, mutants reduced the affinity of SAM for TlyA with most prominent effect observed in case of alanine mutants. Mutations also led to the loss of hydrogen bond and hydrophobic interactions and large-scale movement of atoms evident from the principal component analyses indicating their destabilizing impact on TlyA. The present study gives insights into influence of mutations on binding of SAM to TlyA in M.tb and promoting capreomycin resistance.Communicated by Ramaswamy H. Sarma.


Assuntos
Capreomicina , Mycobacterium tuberculosis , Capreomicina/farmacologia , S-Adenosilmetionina/farmacologia , Metionina , Proteínas de Bactérias/metabolismo , Mutação , Metiltransferases/genética
18.
J Med Case Rep ; 15(1): 375, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34315532

RESUMO

BACKGROUND: Non-Hodgkin lymphoma is the fourth most common malignancy in children, and it is not considered to be a hereditary disorder. However, it could affect members from the same family. CASE PRESENTATION: We are presenting two cases of Caucasian female siblings who were diagnosed with mediastinal lymphoblastic lymphoma in the same year. The two young females were presented to the emergency department with respiratory symptoms. After doing radiological investigations and biopsies, they were diagnosed with lymphoblastic lymphoma. The elder sister died before confirming the diagnosis, and the other is on chemotherapy now, with good treatment outcomes. CONCLUSIONS: This case emphasizes the crucial role of precursor genetics in lymphoblastic lymphomas and suggests a strong relation between these genetics and age at symptom presentation. This is the first report of non-Hodgkin lymphoma in a pair of siblings in the pediatric population.


Assuntos
Linfoma não Hodgkin , Linfoma , Neoplasias do Mediastino , Leucemia-Linfoma Linfoblástico de Células Precursoras , Pré-Escolar , Feminino , Humanos , Lactente , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Irmãos
19.
Life Sci ; 248: 117464, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32097667

RESUMO

AIMS: The present study was carried out to investigate the influences of Selenium/Zinc-Enriched probiotics (SeZnP) on growth performance, serum enzyme activity, antioxidant capability, inflammatory factors and gene expression associated with Wistar rats inflated under high ambient thermal-stress. MAIN METHODS: Sixty male rates with six-weeks of age were randomly allocated into five groups (12 per group) and fed basal diet (Control), basal diet supplemented with probiotics (P), Zinc-Enriched probiotics (ZnP, 100 mg/L), Selenium-Enriched Probiotics (SeP, 0.3 mg/L) and Selenium/Zinc-Enriched probiotics (SeZnP, 0.3 mg + 100 mg/L). The experiment lasted 30 days. Blood and Tissues samples were taken to investigate serum enzyme activity, antioxidants capability and inflammatory factors by using of commercial kits and antioxidant, heat shock and inflammatory related molecules expressions were determined by qRT-PCR. KEY FINDINGS: Data analysis revealed that thermal stress significantly increased the level of Aspartate-aminotransferase, Alanine-aminotransferase, Lactate-dehydrogenase, Creatine-kinase, blood urea nitrogen, Creatinine and Alkaline phosphatase compared to P, ZnP, SeP or SeZnP groups (P < 0.01). However, supplementation of ZnP, SeP, and SeZnP significantly enhanced glutathione content, glutathione-peroxidase & superoxide-dismutase activity, and decreased malondialdehyde content (P < 0.05). Moreover, the concentration of IL-2, IL-6 and IL-8 were significantly increased while IL-10 was significantly decreased (P < 0.05). Furthermore, the expression of GPx1 and SOD1 genes were significantly increased, but COX-2, iNOS, HSP70 and 90 mRNA levels were significantly decreased (P < 0.05). Finally, the highest influence of the mentioned parameters was observed in SeZnP supplemented group. SIGNIFICANCE: Our study suggests that SeZnP supplementation serves as possible and best nutritive than ZnP or SeP for Wistar rats raising under high ambient temperature.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Probióticos/administração & dosagem , Selênio/administração & dosagem , Zinco/administração & dosagem , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Nitrogênio da Ureia Sanguínea , Creatina Quinase/genética , Creatina Quinase/metabolismo , Creatinina/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/genética , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA