Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 179: 156585, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579428

RESUMO

The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.


Assuntos
Doenças Autoimunes , Diferenciação Celular , RNA Longo não Codificante , Linfócitos T Reguladores , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , Linfócitos T Reguladores/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Animais , Células Th17/imunologia , Neoplasias/imunologia , Neoplasias/genética , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/genética
2.
Toxicon ; 243: 107720, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38614244

RESUMO

AIM: This study proposed to assess the synergistic effects of Forskolin and Metformin (alone and in combination) on glucose, hematological, liver serum, and oxidative stress parameters in diabetic, healthy, and hepatocellular carcinoma (HCC) induced rats. MATERIALS AND METHODS: Eighty male Wistar rats were divided into 10 experimental groups (8 rats for each group), including 1) healthy group, 2) diabetic group, 3) HCC group, 4) diabet + Metformin (300 mg/kg), 5) diabet + Forskolin (100 mg/kg), 6) diabet + Metformin (300 mg/kg) & Forskolin (100 mg/kg), 7) HCC + Metformin (300 mg/kg), 8) HCC + Forskolin (100 mg/kg), 9) HCC + Metformin (300 mg/kg) & Forskolin (100 mg/kg), and 10) healthy group + Metformin (300 mg/kg) & Forskolin (100 mg/kg). The rats were administrated Forskolin/Metformin daily for 8 weeks. Glucose, hematological, and liver serum parameters were measured and compared among the groups. The levels of malondialdehyde (MDA), and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as 8-hydroxydeoxyguanosine (8 OHdG) levels, were also measured. RESULTS: The average blood glucose reduction in diabetic rats with the Forskolin, Metformin, and Forskolin + Metformin treatments was 43.5%, 47.1%, and 53.9%, respectively. These reduction values for HCC rats after the treatments were 21.0%, 16.2%, and 23.7%, respectively. For all the diabetic and HCC rats treated with Forskolin/Metformin, the MDA, SOD, and GPx levels showed significant improvement compared with the diabetic and HCC groups (P < 0.05). Although the rats treated with Forskolin + Metformin experienced a higher reduction in oxidative stress of blood and urine samples compared to the Forskolin group, the differences between this group and rats treated with Metformin were not significant for all parameters. CONCLUSION: Metformin and Forskolin reduced oxidative stress in diabetic and HCC-induced rats. The results indicated that the combination of agents (Metformin & Forskolin) had greater therapeutic effects than Forskolin alone in reducing glucose levels in diabetic rats. However, the ameliorative effects of combining Metformin and Forskolin on blood and urine oxidative stress were not statistically higher than those of Metformin alone.


Assuntos
Carcinoma Hepatocelular , Colforsina , Diabetes Mellitus Experimental , Hipoglicemiantes , Neoplasias Hepáticas , Metformina , Estresse Oxidativo , Ratos Wistar , Animais , Metformina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Colforsina/farmacologia , Masculino , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sinergismo Farmacológico , Glicemia , Malondialdeído/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA