Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230780

RESUMO

CAR T cell treatment of solid tumours is limited by poor persistence partly due to CD95 ligand (CD95L)-induced apoptosis. Both T cells and cells within the tumour microenvironment (TME) may express CD95L, triggering apoptosis in CD95-receptor-positive CAR T cells. Tonic signalling of CAR T cells may also increase CD95-dependent AICD. Because the intracellular protein c-FLIP protects T cells from AICD, we expressed c-FLIPp43 within a Her-2 targeted CAR cassette and evaluated the potential of c-FLIPp43 through in vitro functional assays and in vivo tumour-bearing xenograft model. cFLIP expression protected against CD95L-induced cell death in the Jurkat T cell lines. However, in primary human CAR T cells containing CAR-CD28 domains, c-FLIPp43 overexpression had minimal additional impact on resistance to CD95L-induded cell death. In vitro cytotoxicity against a breast cancer tumour cell line was not altered by c-FLIPp43 expression, but the expression of c-FLIPp43 in Her2-CAR T cells lowered interferon-γ secretion, without markedly affecting IL-2 levels, and c-FLIPp43-Her2-CAR T cells showed reduced anti-tumour activity in immunodeficient mice with breast cancer. The findings of this study provide a new understanding of the effects of controlling extrinsic apoptosis pathway suppression in CAR T cells, suggesting that c-FLIPp43 expression reduces anti-tumour immunity through the modulation of effector T cell pathways.

2.
Biotechnol Prog ; 31(6): 1579-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26260294

RESUMO

Viral vectors have a wide range of applications in biology, particularly in gene therapy. Based on their integration capacity, viral vectors are classified as either integrating or non-integrating vectors. Although integrating vectors, such as lentivectors, have the ability to direct prolonged expression of exogenous genes, manipulation of the host genome is an inappropriate feature of these gene delivery tools. Non-integrating vectors, such as episomal replicating plasmids, can replicate and persist in host cells for long periods without any chromosomal interruption. These advantages made them good tools for gene induction purposes in gene therapy and basic studies. Due to the necessity of gene induction in stem cells for study of mammalian development and targeted differentiation, the use of integrating vectors for prolonged expression of genes of interest has been developed. Application of replicating plasmids can overcome some drawbacks associated with integrating vectors, although replication and maintenance of these plasmids can differ between cell types. Previously, it has been shown that such plasmids can be maintained in human embryonic stem cells for more than one month, but the rate of the plasmid replication during the host cell cycle has not been elucidated. In the present study, we showed that an EBV-based plasmid can replicate simultaneously with host in pluripotent and multipotent human and mouse stem cells and can be sustained for long time periods in dividing cells.


Assuntos
Vetores Genéticos/genética , Herpesvirus Humano 4/genética , Plasmídeos/genética , Células-Tronco/virologia , Animais , Linhagem Celular , Farmacorresistência Viral , Células HeLa , Humanos , Camundongos , Replicação Viral/genética
3.
Oncol Rev ; 7(1): e8, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25992229

RESUMO

Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs). Tumor-initiating cells (T-ICs) or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs) in many aspects (such as pluripotency and self-renewal), recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs). ncRNAs are classified in two groups: microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA