Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 88(4): 359-70, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22516520

RESUMO

Mechanisms underlying shock-induced conditioned fear - a paradigm frequently used to model posttraumatic stress disorder, PTSD - are usually studied shortly after shocks. Some of the brain regions relevant to conditioned fear were activated in all the c-Fos studies published so far, but the overlap between the activated regions was small across studies. We hypothesized that discrepant findings were due to dynamic neural changes that followed shocks, and a more consistent picture would emerge if consequences were studied after a longer interval. Therefore, we exposed rats to a single session of footshocks and studied their behavioral and neural responses one and 28 days later. The neuronal activation marker c-Fos was studied in 24 brain regions relevant for conditioned fear, e.g. in subdivisions of the prefrontal cortex, hippocampus, amygdala, hypothalamic defensive system, brainstem monoaminergic nuclei and periaqueductal gray. The intensity of conditioned fear (as shown by the duration of contextual freezing) was similar at the two time-points, but the associated neuronal changes were qualitatively different. Surprisingly, however, Multiple Regression Analyses suggested that conditioned fear-induced changes in neuronal activation patterns predicted the duration of freezing with high accuracy at both time points. We suggest that exposure to electric shocks is followed by a period of plasticity where the mechanisms that sustain conditioned fear undergo qualitative changes. Neuronal changes observed 28 days but not 1 day after shocks were consistent with those observed in human studies performed in PTSD patients.


Assuntos
Encéfalo/metabolismo , Condicionamento Clássico , Medo/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar
2.
Neuropsychopharmacology ; 37(8): 1838-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453137

RESUMO

Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotine's effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles.


Assuntos
Clofibrato/farmacologia , Avaliação Pré-Clínica de Medicamentos/psicologia , Hipolipemiantes/farmacologia , Nicotina/farmacologia , Recompensa , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Clofibrato/uso terapêutico , Modelos Animais de Doenças , Dopamina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Indóis/farmacologia , Masculino , Neurônios/fisiologia , Nicotina/administração & dosagem , Nicotina/antagonistas & inibidores , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Saimiri , Prevenção Secundária , Autoadministração , Tabagismo/tratamento farmacológico , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA