Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Microbiol ; 13: 828636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283856

RESUMO

Hepatitis E virus (HEV) is the major cause of acute hepatitis worldwide. HEV is a positive-sense RNA virus expressing three open reading frames (ORFs). ORF1 encodes the ORF1 non-structural polyprotein, the viral replicase which transcribes the full-length genome and a subgenomic RNA that encodes the structural ORF2 and ORF3 proteins. The present study is focused on the replication step with the aim to determine whether the ORF1 polyprotein is processed during the HEV lifecycle and to identify where the replication takes place inside the host cell. As no commercial antibody recognizes ORF1 in HEV-replicating cells, we aimed at inserting epitope tags within the ORF1 protein without impacting the virus replication efficacy. Two insertion sites located in the hypervariable region were thus selected to tolerate the V5 epitope while preserving HEV replication efficacy. Once integrated into the infectious full-length Kernow C-1 p6 strain, the V5 epitopes did neither impact the replication of genomic nor the production of subgenomic RNA. Also, the V5-tagged viral particles remained as infectious as the wildtype particles to Huh-7.5 cells. Next, the expression pattern of the V5-tagged ORF1 was compared in heterologous expression and replicative HEV systems. A high molecular weight protein (180 kDa) that was expressed in all three systems and that likely corresponds to the unprocessed form of ORF1 was detected up to 25 days after electroporation in the p6 cell culture system. Additionally, less abundant products of lower molecular weights were detected in both in cytoplasmic and nuclear compartments. Concurrently, the V5-tagged ORF1 was localized by confocal microscopy inside the cell nucleus but also as compact perinuclear substructures in which ORF2 and ORF3 proteins were detected. Importantly, using in situ hybridization (RNAScope ®), positive and negative-strand HEV RNAs were localized in the perinuclear substructures of HEV-producing cells. Finally, by simultaneous detection of HEV genomic RNAs and viral proteins in these substructures, we identified candidate HEV factories.

2.
Rev Iberoam Micol ; 31(1): 54-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24286763

RESUMO

In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).


Assuntos
Microbiologia do Ar , Fungos/genética , Genoma Fúngico , Metagenômica , Micoses/transmissão , Hibridização Genômica Comparativa , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Evolução Molecular , Fungos/patogenicidade , Humanos , Pulmão/microbiologia , Microbiota , Técnicas de Diagnóstico Molecular , Micologia/métodos , Micoses/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Hipersensibilidade Respiratória/microbiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/transmissão , Especificidade da Espécie , Escarro/microbiologia , Virulência
3.
PLoS One ; 8(11): e79958, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223207

RESUMO

Pneumocystis organisms are airborne opportunistic pathogens that cannot be continuously grown in culture. Consequently, the follow-up of Pneumocystis stage-to-stage differentiation, the sequence of their multiplication processes as well as formal identification of the transmitted form have remained elusive. The successful high-speed cell sorting of trophic and cystic forms is paving the way for the elucidation of the complex Pneumocystis life cycle. The growth of each sorted Pneumocystis stage population was followed up independently both in nude rats and in vitro. In addition, by setting up a novel nude rat model, we attempted to delineate which cystic and/or trophic forms can be naturally aerially transmitted from host to host. The results showed that in axenic culture, cystic forms can differentiate into trophic forms, whereas trophic forms are unable to evolve into cystic forms. In contrast, nude rats inoculated with pure trophic forms are able to produce cystic forms and vice versa. Transmission experiments indicated that 12 h of contact between seeder and recipient nude rats was sufficient for cystic forms to be aerially transmitted. In conclusion, trophic- to cystic-form transition is a key step in the proliferation of Pneumocystis microfungi because the cystic forms (but not the trophic forms) can be transmitted by aerial route from host to host.


Assuntos
Infecções por Pneumocystis/transmissão , Pneumocystis carinii/patogenicidade , Microbiologia do Ar , Animais , Infecções por Pneumocystis/microbiologia , Ratos , Ratos Nus
4.
PLoS One ; 6(6): e20935, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695077

RESUMO

Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its modes of proliferation.


Assuntos
Citometria de Fluxo , Ploidias , Pneumocystis carinii/citologia , Pneumocystis carinii/genética , Animais , Ciclo Celular , Núcleo Celular/genética , DNA Fúngico/genética , Diploide , Haploidia , Pneumocystis carinii/crescimento & desenvolvimento , Ratos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
5.
J Eukaryot Microbiol ; 56(5): 446-53, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19737197

RESUMO

The separation of Pneumocystis carinii life-cycle stages while preserving infectivity is a hitherto unresolved challenge. We describe an original, reproducible, and efficient method for separating trophic from cystic forms of P. carinii using a high-speed cell sorter. The large amounts of highly purified (99.6+/-0.3%) infectious trophic and cystic forms can now be used to elucidate the poorly understood P. carinii life cycle.


Assuntos
Citometria de Fluxo/métodos , Pneumocystis carinii/classificação , Pneumocystis carinii/isolamento & purificação , Animais , Imunofluorescência/métodos , Humanos
6.
Mem. Inst. Oswaldo Cruz ; 104(3): 419-426, May 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-517005

RESUMO

First recognised as "schizonts" of Trypanosoma cruzi, Pneumocystis organisms are now considered as part of an early-diverging lineage of Ascomycetes. As no robust long-term culture model is available, most data on the Pneumocystis cell cycle have stemmed from ultrastructural images of infected mammalian lungs. Although most fungi developing in animals do not complete a sexual cycle in vivo, Pneumocystis species constitute one of a few exceptions. Recently, the molecular identification of several key players in the fungal mating pathway has provided further evidence for the existence of conjugation and meiosis in Pneumocystisorganisms. Dynamic follow-up of stage-to-stage transition as well as studies of stage-specific proteins and/or genes would provide a better understanding of the still hypothetical Pneumocystislife cycle. Although difficult to achieve, stage purification seems a reasonable way forward in the absence of efficient culture systems. This mini-review provides a comprehensive overview of the historical milestones leading to the current knowledge available on the Pneumocystis life cycle.


Assuntos
Animais , Ciclo Celular/fisiologia , Genes Fúngicos Tipo Acasalamento/fisiologia , Estágios do Ciclo de Vida/fisiologia , Pneumocystis/crescimento & desenvolvimento , Ciclo Celular/genética , Genes Fúngicos Tipo Acasalamento/genética , Microscopia Eletrônica de Transmissão , Pneumocystis/genética , Pneumocystis/ultraestrutura
7.
Mol Cancer Res ; 3(11): 627-34, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16317088

RESUMO

The Chk2 kinase is a tumor suppressor and key component of the DNA damage checkpoint response that encompasses cell cycle arrest, apoptosis, and DNA repair. It has also been shown to have a role in replicative senescence resulting from dysfunctional telomeres. Some of these functions are at least partially exerted through activation of the p53 transcription factor. High-level expression of virally transduced Chk2 in A549 human lung carcinoma cells led to arrested proliferation, apoptosis, and senescence. These were accompanied by various molecular events, including p21(Waf1/Cip1) (p21) transcriptional induction, consistent with p53 activation. However, Chk2-dependent senescence and p21 transcriptional induction also occurred in p53-defective SK-BR-3 (breast carcinoma) and HaCaT (immortalized keratinocyte) cells. Small interfering RNA-mediated knockdown of p21 in p53-defective cells expressing Chk2 resulted in a decrease in senescent cells. These results revealed a p53-independent role for Chk2 in p21 induction and senescence that may contribute to tumor suppression and genotoxic treatment outcome.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Neoplasias da Mama , Divisão Celular/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Quinase do Ponto de Checagem 2 , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/citologia , Neoplasias Pulmonares , RNA Interferente Pequeno , Retroviridae/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA