Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139837

RESUMO

Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFß1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.

2.
Chemosphere ; 291(Pt 3): 132842, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767849

RESUMO

Timely detection of harmful, poisonous and air pollutant gases is of vital importance to the protection of human beings from exposure to rigorous gases. The development of gas-sensing devices based on sphere-like porous SnO2/ZIF-8 nanocomposites is required to overcome this challenge. Nanostructures with high surface area, more porosity and hollow interior provide plenty of active cites for high responses in metal oxide gas sensors. The engineered gas sensors have excellent sensing sensitivity (164), rapid response and recovery times (60, 45 s), and favorable selectivity for NO2 gases under 300 °C. Consequently, NO2 gas sensors based on core-shell SnO2/ZIF-8 nanospheres are regarded viable capacity industrial applicants.


Assuntos
Nanocompostos , Nanosferas , Gases , Humanos , Dióxido de Nitrogênio , Óxidos
3.
Chemosphere ; 287(Pt 2): 132178, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34509024

RESUMO

The rapid increases in environmental hazardous gases have laid dangerous effects on human health. The detection of such pollutants gases is mandatory using various optimal techniques. In this paper, porous multifaceted Co3O4/ZnO nanostructures are synthesized by pyrolyzing sacrificial template of core-shell double zeolitic imidazolate frameworks (ZIFs) for gas sensing applications. The fabricated exhibit superior gas sensor response, high selectivity, fast response/recovery times, and remarkable stability and sensitivity to H2S gas. In particular, the multifaceted Co3O4/ZnO nanostructures show a maximum response of 147 at 100 ppm of H2S under optimum conditions. The remarkable gas sensing performances are mainly ascribed to high porosity, wide surface area multifaceted nanostructures, presence of heterojunctions and catalytic activity of ZnO and Co3O4, which are beneficial for H2S gas sensors industry.


Assuntos
Nanoestruturas , Zeolitas , Óxido de Zinco , Gases , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA