Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39062028

RESUMO

Wilms tumor (WT), or nephroblastoma, is the predominant renal malignancy in the pediatric population. This narrative review explores the evolution of personalized care strategies for WT, synthesizing critical developments in molecular diagnostics and treatment approaches to enhance patient-specific outcomes. We surveyed recent literature from the last five years, focusing on high-impact research across major databases such as PubMed, Scopus, and Web of Science. Diagnostic advancements, including liquid biopsies and diffusion-weighted MRI, have improved early detection precision. The prognostic significance of genetic markers, particularly WT1 mutations and miRNA profiles, is discussed. Novel predictive tools integrating genetic and clinical data to anticipate disease trajectory and therapy response are explored. Progressive treatment strategies, particularly immunotherapy and targeted agents such as HIF-2α inhibitors and GD2-targeted immunotherapy, are highlighted for their role in personalized treatment protocols, especially for refractory or recurrent WT. This review underscores the necessity for personalized management supported by genetic insights, with improved survival rates for localized disease exceeding 90%. However, knowledge gaps persist in therapies for high-risk patients and strategies to reduce long-term treatment-related morbidity. In conclusion, this narrative review highlights the need for ongoing research, particularly on the long-term outcomes of emerging therapies and integrating multi-omic data to inform clinical decision-making, paving the way for more individualized treatment pathways.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927865

RESUMO

Prostate cancer is a significant health concern with high mortality rates and substantial economic impact. Early detection plays a crucial role in improving patient outcomes. This study introduces a non-invasive computer-aided diagnosis (CAD) system that leverages intravoxel incoherent motion (IVIM) parameters for the detection and diagnosis of prostate cancer (PCa). IVIM imaging enables the differentiation of water molecule diffusion within capillaries and outside vessels, offering valuable insights into tumor characteristics. The proposed approach utilizes a two-step segmentation approach through the use of three U-Net architectures for extracting tumor-containing regions of interest (ROIs) from the segmented images. The performance of the CAD system is thoroughly evaluated, considering the optimal classifier and IVIM parameters for differentiation and comparing the diagnostic value of IVIM parameters with the commonly used apparent diffusion coefficient (ADC). The results demonstrate that the combination of central zone (CZ) and peripheral zone (PZ) features with the Random Forest Classifier (RFC) yields the best performance. The CAD system achieves an accuracy of 84.08% and a balanced accuracy of 82.60%. This combination showcases high sensitivity (93.24%) and reasonable specificity (71.96%), along with good precision (81.48%) and F1 score (86.96%). These findings highlight the effectiveness of the proposed CAD system in accurately segmenting and diagnosing PCa. This study represents a significant advancement in non-invasive methods for early detection and diagnosis of PCa, showcasing the potential of IVIM parameters in combination with machine learning techniques. This developed solution has the potential to revolutionize PCa diagnosis, leading to improved patient outcomes and reduced healthcare costs.

3.
Cancers (Basel) ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958461

RESUMO

Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.

4.
Comput Methods Programs Biomed ; 240: 107692, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37459773

RESUMO

BACKGROUND AND OBJECTIVE: Lung cancer is an important cause of death and morbidity around the world. Two of the primary computed tomography (CT) imaging markers that can be used to differentiate malignant and benign lung nodules are the inhomogeneity of the nodules' texture and nodular morphology. The objective of this paper is to present a new model that can capture the inhomogeneity of the detected lung nodules as well as their morphology. METHODS: We modified the local ternary pattern to use three different levels (instead of two) and a new pattern identification algorithm to capture the nodule's inhomogeneity and morphology in a more accurate and flexible way. This modification aims to address the wide Hounsfield unit value range of the detected nodules which decreases the ability of the traditional local binary/ternary pattern to accurately classify nodules' inhomogeneity. The cut-off values defining these three levels of the novel technique are estimated empirically from the training data. Subsequently, the extracted imaging markers are fed to a hyper-tuned stacked generalization-based classification architecture to classify the nodules as malignant or benign. The proposed system was evaluated on in vivo datasets of 679 CT scans (364 malignant nodules and 315 benign nodules) from the benchmark Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and an external dataset of 100 CT scans (50 malignant and 50 benign). The performance of the classifier was quantitatively assessed using a Leave-one-out cross-validation approach and externally validated using the unseen external dataset based on sensitivity, specificity, and accuracy. RESULTS: The overall accuracy of the system is 96.17% with 97.14% sensitivity and 95.33% specificity. The area under the receiver-operating characteristic curve was 0.98, which highlights the robustness of the system. Using the unseen external dataset for validating the system led to consistent results showing the generalization abilities of the proposed approach. Moreover, applying the original local binary/ternary pattern or using other classification structures achieved inferior performance when compared against the proposed approach. CONCLUSIONS: These experimental results demonstrate the feasibility of the proposed model as a novel tool to assist physicians and radiologists for lung nodules' early assessment based on the new comprehensive imaging markers.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Curva ROC , Nódulo Pulmonar Solitário/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador
5.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36766591

RESUMO

Wilms' tumor, the most prevalent renal tumor in children, is known for its aggressive prognosis and recurrence. Treatment of Wilms' tumor is multimodal, including surgery, chemotherapy, and occasionally, radiation therapy. Preoperative chemotherapy is used routinely in European studies and in select indications in North American trials. The objective of this study was to build a novel computer-aided prediction system for preoperative chemotherapy response in Wilms' tumors. A total of 63 patients (age range: 6 months-14 years) were included in this study, after receiving their guardians' informed consent. We incorporated contrast-enhanced computed tomography imaging to extract the texture, shape, and functionality-based features from Wilms' tumors before chemotherapy. The proposed system consists of six steps: (i) delineate the tumors' images across the three contrast phases; (ii) characterize the texture of the tumors using first- and second-order textural features; (iii) extract the shape features by applying a parametric spherical harmonics model, sphericity, and elongation; (iv) capture the intensity changes across the contrast phases to describe the tumors' functionality; (v) apply features fusion based on the extracted features; and (vi) determine the final prediction as responsive or non-responsive via a tuned support vector machine classifier. The system achieved an overall accuracy of 95.24%, with 95.65% sensitivity and 94.12% specificity. Using the support vector machine along with the integrated features led to superior results compared with other classification models. This study integrates novel imaging markers with a machine learning classification model to make early predictions about how a Wilms' tumor will respond to preoperative chemotherapy. This can lead to personalized management plans for Wilms' tumors.

6.
Cancers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551606

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.

7.
Bioengineering (Basel) ; 9(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36290500

RESUMO

Gliomas are the most common type of primary brain tumors and one of the highest causes of mortality worldwide. Accurate grading of gliomas is of immense importance to administer proper treatment plans. In this paper, we develop a comprehensive non-invasive multimodal magnetic resonance (MR)-based computer-aided diagnostic (CAD) system to precisely differentiate between different grades of gliomas (Grades: I, II, III, and IV). A total of 99 patients with gliomas (M = 49, F = 50, age range = 1-79 years) were included after providing their informed consent to participate in this study. The proposed imaging-based glioma grading (GG-CAD) system utilizes three different MR imaging modalities, namely; contrast-enhanced T1-MR, T2-MR known as fluid-attenuated inversion-recovery (FLAIR), and diffusion-weighted (DW-MR) to extract the following imaging features: (i) morphological features based on constructing the histogram of oriented gradients (HOG) and estimating the glioma volume, (ii) first and second orders textural features by constructing histogram, gray-level run length matrix (GLRLM), and gray-level co-occurrence matrix (GLCM), (iii) functional features by estimating voxel-wise apparent diffusion coefficients (ADC) and contrast-enhancement slope. These features are then integrated together and processed using a Gini impurity-based selection approach to find the optimal set of significant features. The reduced significant features are then fed to a multi-layer perceptron artificial neural networks (MLP-ANN) classification model to obtain the final diagnosis of a glioma tumor as Grade I, II, III, or IV. The GG-CAD system was evaluated on the enrolled 99 gliomas (Grade I = 13, Grade II = 22, Grade III = 22, and Grade IV = 42) using a leave-one-subject-out (LOSO) and k-fold stratified (with k = 5 and 10) cross-validation approach. The GG-CAD achieved 0.96 ± 0.02 quadratic-weighted Cohen's kappa and 95.8% ± 1.9% overall diagnostic accuracy at LOSO and an outstanding diagnostic performance at k = 10 and 5. Alternative classifiers, including RFs and SVMlin produced inferior results compared to the proposed MLP-ANN GG-CAD system. These findings demonstrate the feasibility of the proposed CAD system as a novel tool to objectively characterize gliomas using the comprehensive extracted and selected imaging features. The developed GG-CAD system holds promise to be used as a non-invasive diagnostic tool for Precise Grading of Glioma.

8.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291803

RESUMO

Bladder cancer (BC) is the 10th most common cancer globally and has a high mortality rate if not detected early and treated promptly. Non-muscle-invasive BC (NMIBC) is a subclassification of BC associated with high rates of recurrence and progression. Current tools for predicting recurrence and progression on NMIBC use scoring systems based on clinical and histopathological markers. These exclude other potentially useful biomarkers which could provide a more accurate personalized risk assessment. Future trends are likely to use artificial intelligence (AI) to enhance the prediction of recurrence in patients with NMIBC and decrease the use of standard clinical protocols such as cystoscopy and cytology. Here, we provide a comprehensive survey of the most recent studies from the last decade (N = 70 studies), focused on the prediction of patient outcomes in NMIBC, particularly recurrence, using biomarkers such as radiomics, histopathology, clinical, and genomics. The value of individual and combined biomarkers is discussed in detail with the goal of identifying future trends that will lead to the personalized management of NMIBC.

9.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270995

RESUMO

Prostate cancer, which is also known as prostatic adenocarcinoma, is an unconstrained growth of epithelial cells in the prostate and has become one of the leading causes of cancer-related death worldwide. The survival of patients with prostate cancer relies on detection at an early, treatable stage. In this paper, we introduce a new comprehensive framework to precisely differentiate between malignant and benign prostate cancer. This framework proposes a noninvasive computer-aided diagnosis system that integrates two imaging modalities of MR (diffusion-weighted (DW) and T2-weighted (T2W)). For the first time, it utilizes the combination of functional features represented by apparent diffusion coefficient (ADC) maps estimated from DW-MRI for the whole prostate in combination with texture features with its first- and second-order representations, extracted from T2W-MRIs of the whole prostate, and shape features represented by spherical harmonics constructed for the lesion inside the prostate and integrated with PSA screening results. The dataset presented in the paper includes 80 biopsy confirmed patients, with a mean age of 65.7 years (43 benign prostatic hyperplasia, 37 prostatic carcinomas). Experiments were conducted using different well-known machine learning approaches including support vector machines (SVM), random forests (RF), decision trees (DT), and linear discriminant analysis (LDA) classification models to study the impact of different feature sets that lead to better identification of prostatic adenocarcinoma. Using a leave-one-out cross-validation approach, the diagnostic results obtained using the SVM classification model along with the combined feature set after applying feature selection (88.75% accuracy, 81.08% sensitivity, 95.35% specificity, and 0.8821 AUC) indicated that the system's performance, after integrating and reducing different types of feature sets, obtained an enhanced diagnostic performance compared with each individual feature set and other machine learning classifiers. In addition, the developed diagnostic system provided consistent diagnostic performance using 10-fold and 5-fold cross-validation approaches, which confirms the reliability, generalization ability, and robustness of the developed system.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Adenocarcinoma/diagnóstico por imagem , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
10.
Insights Imaging ; 12(1): 152, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34676470

RESUMO

This article is a comprehensive review of the basic background, technique, and clinical applications of artificial intelligence (AI) and radiomics in the field of neuro-oncology. A variety of AI and radiomics utilized conventional and advanced techniques to differentiate brain tumors from non-neoplastic lesions such as inflammatory and demyelinating brain lesions. It is used in the diagnosis of gliomas and discrimination of gliomas from lymphomas and metastasis. Also, semiautomated and automated tumor segmentation has been developed for radiotherapy planning and follow-up. It has a role in the grading, prediction of treatment response, and prognosis of gliomas. Radiogenomics allowed the connection of the imaging phenotype of the tumor to its molecular environment. In addition, AI is applied for the assessment of extra-axial brain tumors and pediatric tumors with high performance in tumor detection, classification, and stratification of patient's prognoses.

11.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300667

RESUMO

Renal cell carcinoma (RCC) is the most common and a highly aggressive type of malignant renal tumor. In this manuscript, we aim to identify and integrate the optimal discriminating morphological, textural, and functional features that best describe the malignancy status of a given renal tumor. The integrated discriminating features may lead to the development of a novel comprehensive renal cancer computer-assisted diagnosis (RC-CAD) system with the ability to discriminate between benign and malignant renal tumors and specify the malignancy subtypes for optimal medical management. Informed consent was obtained from a total of 140 biopsy-proven patients to participate in the study (male = 72 and female = 68, age range = 15 to 87 years). There were 70 patients who had RCC (40 clear cell RCC (ccRCC), 30 nonclear cell RCC (nccRCC)), while the other 70 had benign angiomyolipoma tumors. Contrast-enhanced computed tomography (CE-CT) images were acquired, and renal tumors were segmented for all patients to allow the extraction of discriminating imaging features. The RC-CAD system incorporates the following major steps: (i) applying a new parametric spherical harmonic technique to estimate the morphological features, (ii) modeling a novel angular invariant gray-level co-occurrence matrix to estimate the textural features, and (iii) constructing wash-in/wash-out slopes to estimate the functional features by quantifying enhancement variations across different CE-CT phases. These features were subsequently combined and processed using a two-stage multilayer perceptron artificial neural network (MLP-ANN) classifier to classify the renal tumor as benign or malignant and identify the malignancy subtype as well. Using the combined features and a leave-one-subject-out cross-validation approach, the developed RC-CAD system achieved a sensitivity of 95.3%±2.0%, a specificity of 99.9%±0.4%, and Dice similarity coefficient of 0.98±0.01 in differentiating malignant from benign tumors, as well as an overall accuracy of 89.6%±5.0% in discriminating ccRCC from nccRCC. The diagnostic abilities of the developed RC-CAD system were further validated using a randomly stratified 10-fold cross-validation approach. The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). Hence, integrating morphological, textural, and functional features enhances the diagnostic performance, making the proposal a reliable noninvasive diagnostic tool for renal tumors.


Assuntos
Angiomiolipoma , Carcinoma de Células Renais , Neoplasias Renais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Renais/diagnóstico por imagem , Diagnóstico por Computador , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Renais/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Sci Rep ; 11(1): 13148, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162893

RESUMO

Liver cancer is a major cause of morbidity and mortality in the world. The primary goals of this manuscript are the identification of novel imaging markers (morphological, functional, and anatomical/textural), and development of a computer-aided diagnostic (CAD) system to accurately detect and grade liver tumors non-invasively. A total of 95 patients with liver tumors (M = 65, F = 30, age range = 34-82 years) were enrolled in the study after consents were obtained. 38 patients had benign tumors (LR1 = 19 and LR2 = 19), 19 patients had intermediate tumors (LR3), and 38 patients had hepatocellular carcinoma (HCC) malignant tumors (LR4 = 19 and LR5 = 19). A multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) was collected to extract the imaging markers. A comprehensive CAD system was developed, which includes the following main steps: i) estimation of morphological markers using a new parametric spherical harmonic model, ii) estimation of textural markers using a novel rotation invariant gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) models, and iii) calculation of the functional markers by estimating the wash-in/wash-out slopes, which enable quantification of the enhancement characteristics across different CE-MR phases. These markers were subsequently processed using a two-stages random forest-based classifier to classify the liver tumor as benign, intermediate, or malignant and determine the corresponding grade (LR1, LR2, LR3, LR4, or LR5). The overall CAD system using all the identified imaging markers achieved a sensitivity of 91.8%±0.9%, specificity of 91.2%±1.9%, and F[Formula: see text] score of 0.91±0.01, using the leave-one-subject-out (LOSO) cross-validation approach. Importantly, the CAD system achieved overall accuracies of [Formula: see text], 85%±2%, 78%±3%, 83%±4%, and 79%±3% in grading liver tumors into LR1, LR2, LR3, LR4, and LR5, respectively. In addition to LOSO, the developed CAD system was tested using randomly stratified 10-fold and 5-fold cross-validation approaches. Alternative classification algorithms, including support vector machine, naive Bayes classifier, k-nearest neighbors, and linear discriminant analysis all produced inferior results compared to the proposed two stage random forest classification model. These experiments demonstrate the feasibility of the proposed CAD system as a novel tool to objectively assess liver tumors based on the new comprehensive imaging markers. The identified imaging markers and CAD system can be used as a non-invasive diagnostic tool for early and accurate detection and grading of liver cancer.


Assuntos
Diagnóstico por Computador , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patologia , Algoritmos , Humanos , Imageamento Tridimensional , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Gradação de Tumores , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA