Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528120

RESUMO

Exportin-1 (XPO1/CRM1) plays a central role in the nuclear-to-cytoplasmic transport of hundreds of proteins and contributes to other cellular processes, such as centrosome duplication. Small molecules targeting XPO1 induce cytotoxicity, and selinexor was approved by the Food and Drug Administration in 2019 as a cancer chemotherapy for relapsed multiple myeloma. Here, we describe a cell-type-dependent chromatin-binding function for XPO1 that is essential for the chromatin occupancy of NFAT transcription factors and thus the appropriate activation of T cells. Additionally, we establish a class of XPO1-targeting small molecules capable of disrupting the chromatin binding of XPO1 without perturbing nuclear export or inducing cytotoxicity. This work defines a broad transcription regulatory role for XPO1 that is essential for T cell activation as well as a new class of XPO1 modulators to enable therapeutic targeting of XPO1 beyond oncology including in T cell-driven autoimmune disorders.

2.
Am J Ophthalmol Case Rep ; 27: 101606, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35692434

RESUMO

Purpose: To describe a patient with bilateral peripapillary astrocytic hamartomas with exudation of subretinal fluid into the macula and loss of vision without evidence of choroidal neovascularization. The patient rapidly responded to intravitreal bevacizumab injections resulting in reduced subretinal fluid and clinical improvement. Observation: A 70-year-old female presented with worsening vision in her left eye due to subretinal fluid exudation from a peripapillary astrocytic hamartoma. The patient was treated with two doses of bevacizumab with rapid improvement in vision and resolution of subretinal fluid. Genetic testing was negative for common pathogenic variants for tuberous sclerosis and neurofibromatosis, which are highly associated with bilateral optic nerve and retinal astrocytic hamartomas. Conclusion: Astrocytic hamartomas with exudation may be responsive to bevacizumab suggesting a dependence of these lesions on vascular endothelial growth factor (VEGF) independent of secondary choroidal neovascularization. Furthermore, this case describes a patient with bilateral astrocytic hamartomas without genetic or clinical confirmation of associated phakomatoses, such as tuberous sclerosis and neurofibromatosis.

3.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761532

RESUMO

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Assuntos
Cromossomos Humanos/genética , Elementos Facilitadores Genéticos , Amplificação de Genes , Oncogenes , Acetilação , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/metabolismo , DNA de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Neoplásicos , Loci Gênicos , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Neuroglia/metabolismo
4.
J Neurosci ; 36(4): 1336-46, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818520

RESUMO

Gray matter degeneration contributes to progressive disability in multiple sclerosis (MS) and can occur out of proportion to measures of white matter disease. Although white matter pathology, including demyelination and axon injury, can lead to secondary gray matter changes, we hypothesized that neurons can undergo direct excitatory injury within the gray matter independent of these. We tested this using a model of experimental autoimmune encephalomyelitis (EAE) with hippocampal degeneration in C57BL/6 mice, in which immunofluorescent staining showed a 28% loss of PSD95-positive excitatory postsynaptic puncta in hippocampal area CA1 compared with sham-immunized controls, despite preservation of myelin and VGLUT1-positive excitatory axon terminals. Loss of postsynaptic structures was accompanied by appearance of PSD95-positive debris that colocalized with the processes of activated microglia at 25 d after immunization, and clearance of debris was followed by persistently reduced synaptic density at 55 d. In vitro, addition of activated BV2 microglial cells to hippocampal cultures increased neuronal vulnerability to excitotoxic dendritic damage following a burst of synaptic activity in a manner dependent on platelet-activating factor receptor (PAFR) signaling. In vivo treatment with PAFR antagonist BN52021 prevented PSD95-positive synapse loss in hippocampi of mice with EAE but did not affect development of EAE or local microglial activation. These results demonstrate that postsynaptic structures can be a primary target of injury within the gray matter in autoimmune neuroinflammatory disease, and suggest that this may occur via PAFR-mediated modulation of activity-dependent synaptic physiology downstream of microglial activation. SIGNIFICANCE STATEMENT: Unraveling gray matter degeneration is critical for developing treatments for progressive disability and cognitive impairment in multiple sclerosis (MS). In a mouse model of MS, we show that neurons can undergo injury at their synaptic connections within the gray matter, independent of the white matter pathology, demyelination, and axon injury that have been the focus of most current and emerging treatments. Damage to excitatory synapses in the hippocampus occurs in association with activated microglia, which can promote excitotoxic injury via activation of receptors for platelet-activating factor, a proinflammatory signaling molecule elevated in the brain in MS. Platelet-activating factor receptor blockade protected synapses in the mouse model, identifying a potential target for neuroprotective treatments in MS.


Assuntos
Pareamento Cromossômico/fisiologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/patologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Feminino , Fibrinolíticos/farmacologia , Ginkgolídeos/farmacologia , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Guanilato Quinases/metabolismo , Lactonas/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
5.
J Biol Chem ; 289(5): 2489-96, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24352659

RESUMO

Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differentiated/nondividing macrophages, which serve as a key HIV-1 reservoir, contain extremely low dNTP concentrations (20-50 nm), which results from the cellular dNTP hydrolyzing sterile α motif and histidine aspartic domain containing protein 1 (SAMHD1) protein, when compared with activated CD4(+) T cells (2-5 µm). In this study, we first observed that HIV-1 template switching efficiency was nearly doubled in human primary macrophages when compared with activated CD4(+) T cells. Second, SAMHD1 degradation by viral protein X (Vpx), which elevates cellular dNTP concentrations, decreased HIV-1 template switching efficiency in macrophages to the levels comparable with CD4(+) T cells. Third, differentiated SAMHD1 shRNA THP-1 cells have a 2-fold increase in HIV-1 template switching efficiency. Fourth, SAMHD1 degradation by Vpx did not alter HIV-1 template switching efficiency in activated CD4(+) T cells. Finally, the HIV-1 V148I RT mutant that is defective in dNTP binding and has DNA synthesis delay promoted RT stand transfer when compared with wild type RT, particularly at low dNTP concentrations. Here, we report that SAMHD1 regulation of the dNTP concentrations influences HIV-1 template switching efficiency, particularly in macrophages.


Assuntos
Infecções por HIV/imunologia , Transcriptase Reversa do HIV/genética , HIV-1/genética , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , Recombinação Homóloga/genética , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Monócitos/citologia , Monócitos/imunologia , Monócitos/virologia , Cultura Primária de Células , Transcrição Reversa/genética , Ribonuclease H/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA