Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 101(4): 345-357, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710659

RESUMO

The transcription factor Myc is critically important in driving cell proliferation, a function that is frequently dysregulated in cancer. To avoid this dysregulation Myc is tightly controlled by numerous layers of regulation. One such layer is the use of distal regulatory enhancers to drive Myc expression. Here, using chromosome conformation capture to examine B cells of the immune system in the first hours after their activation, we reveal a previously unidentified enhancer of Myc. The interactivity of this enhancer coincides with a dramatic, but discrete, spike in Myc expression 3 h post-activation. However, genetic deletion of this region, has little impact on Myc expression, Myc protein level or in vitro and in vivo cell proliferation. Examination of the enhancer deleted regulatory landscape suggests that enhancer redundancy likely sustains Myc expression. This work highlights not only the importance of temporally examining enhancers, but also the complexity and dynamics of the regulation of critical genes such as Myc.


Assuntos
Elementos Facilitadores Genéticos , Genes myc , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas
2.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019788

RESUMO

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Assuntos
Biocatálise , Histonas/metabolismo , Oncogenes , Transcrição Gênica , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Linhagem Celular , Cromatina/metabolismo , Proteínas Correpressoras/metabolismo , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilases/metabolismo , Humanos , Cinética , Metilação , Modelos Biológicos , RNA Polimerase II/metabolismo
3.
Immunol Cell Biol ; 99(3): 323-332, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32970351

RESUMO

The eukaryotic genome is three-dimensionally segregated into discrete globules of topologically associating domains (TADs), within which numerous cis-regulatory elements such as enhancers and promoters interact to regulate gene expression. In this study, we identify a T-cell-specific sub-TAD containing the Gata3 locus, and reveal a previously uncharacterized long noncoding RNA (Dreg1) within a distant enhancer lying approximately 280 kb downstream of Gata3. Dreg1 expression is highly correlated with that of Gata3 during early immune system development and T helper type 2 cell differentiation. Inhibition and overexpression of Dreg1 suggest that it may be involved in the establishment, but not in the maintenance of Gata3 expression. Overall, we propose that Dreg1 is a novel regulator of Gata3 and may inform therapeutic strategies in diseases such allergy and lymphoma, where Gata3 has a pathological role.


Assuntos
RNA Longo não Codificante , Cromatina , Elementos Facilitadores Genéticos/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética
4.
Nat Commun ; 11(1): 3013, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541654

RESUMO

B lymphoid development is initiated by the differentiation of hematopoietic stem cells into lineage committed progenitors, ultimately generating mature B cells. This highly regulated process generates clonal immunological diversity via recombination of immunoglobulin V, D and J gene segments. While several transcription factors that control B cell development and V(D)J recombination have been defined, how these processes are initiated and coordinated into a precise regulatory network remains poorly understood. Here, we show that the transcription factor ETS Related Gene (Erg) is essential for early B lymphoid differentiation. Erg initiates a transcriptional network involving the B cell lineage defining genes, Ebf1 and Pax5, which directly promotes expression of key genes involved in V(D)J recombination and formation of the B cell receptor. Complementation of Erg deficiency with a productively rearranged immunoglobulin gene rescued B lineage development, demonstrating that Erg is an essential and stage-specific regulator of the gene regulatory network controlling B lymphopoiesis.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Linfopoese/genética , Proteínas Oncogênicas/genética , Transcrição Gênica , Regulador Transcricional ERG/genética , Animais , Linfócitos B/citologia , Linhagem da Célula/genética , Células Cultivadas , Redes Reguladoras de Genes/genética , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/metabolismo , Recombinação V(D)J/genética
5.
Blood ; 135(23): 2049-2058, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32305044

RESUMO

Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.


Assuntos
Senilidade Prematura/patologia , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/patologia , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Idoso , Senilidade Prematura/metabolismo , Animais , Núcleo Celular/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Heterocromatina/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
6.
Biol Chem ; 401(8): 933-943, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32045348

RESUMO

The polycomb repressive complex 2 (PRC2) consists of three core components EZH2, SUZ12 and EED. EZH2 catalyzes the methylation of lysine 27 of histone H3, a modification associated with gene silencing. Through gene duplication higher vertebrate genomes also encode a second partially redundant methyltransferase, EZH1. Within the mammalian immune system most research has concentrated on EZH2 which is expressed predominantly in proliferating cells. EZH2 and other PRC2 components are required for hematopoietic stem cell function and lymphocyte development, at least in part by repressing cell cycle inhibitors. At later stages of immune cell differentiation, EZH2 plays essential roles in humoral and cell-mediated adaptive immunity, as well as the maintenance of immune homeostasis. EZH2 is often overactive in cancers, through both gain-of-function mutations and over-expression, an observation that has led to the development and clinical testing of specific EZH2 inhibitors. Such inhibitors may also be of use in inflammatory and autoimmune settings, as EZH2 inhibition dampens the immune response. Here, we will review the current state of understanding of the roles for EZH2, and PRC2 more generally, in the development and function of the immune system.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Diferenciação Celular , Humanos
7.
Nat Commun ; 10(1): 2723, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222014

RESUMO

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Transativadores/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Medula Óssea/patologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
EMBO Rep ; 18(4): 619-631, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223321

RESUMO

Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Homeostase , Imunidade/genética , Animais , Diferenciação Celular , Linhagem Celular , Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metilação , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Ligação Proteica , Proteólise , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo
10.
Immunol Rev ; 261(1): 50-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25123276

RESUMO

The multiple lineages and differentiation states that constitute the T-cell compartment all derive from a common thymic precursor. These distinct transcriptional states are maintained both in time and after multiple rounds of cell division by the concerted actions of a small set of lineage-defining transcription factors that act in conjunction with a suite of chromatin-modifying enzymes to activate, repress, and fine-tune gene expression. These chromatin modifications collectively provide an epigenetic code that allows the stable and heritable maintenance of the T-cell phenotype. Recently, it has become apparent that the epigenetic code represents a therapeutic target for a variety of immune cell disorders, including lymphoma and acute and chronic inflammatory diseases. Here, we review the recent advances in epigenetic regulation of gene expression, particularly as it relates to the T-cell differentiation and function.


Assuntos
Epigênese Genética , Código das Histonas/fisiologia , Doenças do Sistema Imunitário/imunologia , Linfoma/imunologia , Linfócitos T/imunologia , Animais , Terapia Biológica/tendências , Diferenciação Celular , Linhagem da Célula , Montagem e Desmontagem da Cromatina/imunologia , Epigênese Genética/genética , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Doenças do Sistema Imunitário/terapia , Linfoma/terapia
11.
Blood ; 122(15): 2654-63, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23982173

RESUMO

Deregulation of polycomb group complexes polycomb repressive complex 1 (PRC1) and 2 (PRC2) is associated with human cancers. Although inactivating mutations in PRC2-encoding genes EZH2, EED, and SUZ12 are present in T-cell acute lymphoblastic leukemia and in myeloid malignancies, gain-of-function mutations in EZH2 are frequently observed in B-cell lymphoma, implying disease-dependent effects of individual mutations. We show that, in contrast to PRC1, PRC2 is a tumor suppressor in Eµ-myc lymphomagenesis, because disease onset was accelerated by heterozygosity for Suz12 or by short hairpin RNA-mediated knockdown of Suz12 or Ezh2. Accelerated lymphomagenesis was associated with increased accumulation of B-lymphoid cells in the absence of effects on apoptosis or cell cycling. However, Suz12-deficient B-lymphoid progenitors exhibit enhanced serial clonogenicity. Thus, PRC2 normally restricts the self-renewal of B-lymphoid progenitors, the disruption of which contributes to lymphomagenesis. This finding provides new insight regarding the functional contribution of mutations in PRC2 in a range of leukemias.


Assuntos
Linfócitos B/fisiologia , Linfoma de Células B/genética , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linfócitos B/citologia , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
13.
Immunity ; 25(1): 153-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16860764

RESUMO

Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation.


Assuntos
Antígenos/imunologia , Movimento Celular , Apresentação Cruzada , Células Dendríticas/citologia , Células Dendríticas/imunologia , Linfonodos/citologia , Linfócitos T Citotóxicos/imunologia , Animais , Medula Óssea/imunologia , Células Cultivadas , Herpes Simples/imunologia , Herpes Simples/virologia , Linfonodos/imunologia , Camundongos , Camundongos Transgênicos , Simplexvirus/imunologia
14.
Science ; 301(5641): 1925-8, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-14512632

RESUMO

The classical paradigm for dendritic cell function derives from the study of Langerhans cells, which predominate within skin epidermis. After an encounter with foreign agents, Langerhans cells are thought to migrate to draining lymph nodes, where they initiate T cell priming. Contrary to this, we show here that infection of murine epidermis by herpes simplex virus did not result in the priming of virus-specific cytotoxic T lymphocytes by Langerhans cells. Rather, the priming response required a distinct CD8alpha+ dendritic cell subset. Thus, the traditional view of Langerhans cells in epidermal immunity needs to be revisited to accommodate a requirement for other dendritic cells in this response.


Assuntos
Antígenos CD8/análise , Células Dendríticas/imunologia , Epiderme/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Células de Langerhans/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Antígenos CD/análise , Antígenos Virais/imunologia , Separação Celular , Quimera , Citotoxicidade Imunológica , Antígenos H-2/análise , Antígenos H-2/imunologia , Antígenos de Histocompatibilidade Classe II/análise , Lectinas Tipo C/análise , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/análise , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA