Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Neuro Oncol ; 26(Supplement_2): S173-S181, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445964

RESUMO

BACKGROUND: H3 K27M-mutant diffuse glioma primarily affects children and young adults, is associated with a poor prognosis, and no effective systemic therapy is currently available. ONC201 (dordaviprone) has previously demonstrated efficacy in patients with recurrent disease. This phase 3 trial evaluates ONC201 in patients with newly diagnosed H3 K27M-mutant glioma. METHODS: ACTION (NCT05580562) is a randomized, double-blind, placebo-controlled, parallel-group, international phase 3 study of ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma. Patients who have completed standard frontline radiotherapy are randomized 1:1:1 to receive placebo, once-weekly dordaviprone, or twice-weekly dordaviprone on 2 consecutive days. Primary efficacy endpoints are overall survival (OS) and progression-free survival (PFS); PFS is assessed by response assessment in neuro-oncology high-grade glioma criteria (RANO-HGG) by blind independent central review. Secondary objectives include safety, additional efficacy endpoints, clinical benefit, and quality of life. Eligible patients have histologically confirmed H3 K27M-mutant diffuse glioma, a Karnofsky/Lansky performance status ≥70, and completed first-line radiotherapy. Eligibility is not restricted by age; however, patients must be ≥10 kg at time of randomization. Patients with a primary spinal tumor, diffuse intrinsic pontine glioma, leptomeningeal disease, or cerebrospinal fluid dissemination are not eligible. ACTION is currently enrolling in multiple international sites.


Assuntos
Neoplasias Encefálicas , Glioma , Mutação , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Método Duplo-Cego , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Adulto , Masculino , Feminino , Histonas/genética , Adolescente , Criança , Adulto Jovem , Prognóstico , Taxa de Sobrevida , Qualidade de Vida , Pessoa de Meia-Idade , Seguimentos , Idoso
2.
Neuro Oncol ; 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554031

RESUMO

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

3.
J Clin Oncol ; 42(13): 1542-1552, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335473

RESUMO

PURPOSE: Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS: Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS: The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION: ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Mutação , Humanos , Adulto , Feminino , Masculino , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Criança , Histonas/genética , Idoso , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Pré-Escolar , Pirimidinas/uso terapêutico , Pirimidinas/efeitos adversos , Piridonas/uso terapêutico
4.
Neuro Oncol ; 26(Supplement_2): S155-S164, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400780

RESUMO

BACKGROUND: This study evaluated the safety and pharmacokinetics (PK) of oral ONC201 administered twice-weekly on consecutive days (D1D2) in pediatric patients with newly diagnosed DIPG and/or recurrent/refractory H3 K27M glioma. METHODS: This phase 1 dose-escalation and expansion study included pediatric patients with H3 K27M-mutant glioma and/or DIPG following ≥1 line of therapy (NCT03416530). ONC201 was administered D1D2 at 3 dose levels (DLs; -1, 1, and 2). The actual administered dose within DLs was dependent on weight. Safety was assessed in all DLs; PK analysis was conducted in DL2. Patients receiving once-weekly ONC201 (D1) served as a PK comparator. RESULTS: Twelve patients received D1D2 ONC201 (DL1, n = 3; DL1, n = 3; DL2, n = 6); no dose-limiting toxicities or grade ≥3 treatment-related adverse events occurred. PK analyses at DL2 (D1-250 mg, n = 3; D1-625 mg, n = 3; D1D2-250 mg, n = 2; D1D2-625 mg, n = 2) demonstrated variability in Cmax, AUC0-24, and AUC0-48, with comparable exposures across weight groups. No accumulation occurred with D1D2 dosing; the majority of ONC201 cleared before administration of the second dose. Cmax was variable between groups but did not appear to increase with D1D2 dosing. AUC0-48 was greater with D1D2 than once-weekly. CONCLUSIONS: ONC201 given D1D2 was well tolerated at all DLs and associated with greater AUC0-48.


Assuntos
Neoplasias Encefálicas , Glioma , Mutação , Humanos , Masculino , Feminino , Criança , Adolescente , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Pré-Escolar , Histonas , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Pirimidinas/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Esquema de Medicação , Dose Máxima Tolerável , Relação Dose-Resposta a Droga , Prognóstico , Seguimentos
5.
Neuro Oncol ; 26(Supplement_2): S165-S172, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38386699

RESUMO

BACKGROUND: Diffuse midline glioma, H3 K27-altered (H3 K27M-altered DMG) are invariably lethal, disproportionately affecting the young and without effective treatment besides radiotherapy. The 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification defined H3 K27M mutations as pathognomonic but restricted diagnosis to diffuse gliomas involving midline structures by 2018. Dordaviprone (ONC201) is an oral investigational small molecule, DRD2 antagonist, and ClpP agonist associated with durable responses in recurrent H3 K27M-mutant DMG. Activity of ONC201 in non-midline H3 K27M-mutant diffuse gliomas has not been reported. METHODS: Patients with recurrent non-midline H3 K27M-mutant diffuse gliomas treated with ONC201 were enrolled in 5 trials. Eligibility included measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma, Karnofsky/Lansky performance score ≥60, and ≥90 days from radiation. The primary endpoint was overall response rate (ORR). RESULTS: Five patients with cerebral gliomas (3 frontal, 1 temporal, and 1 parietal) met inclusion. One complete and one partial response were reported by investigators. Blinded independent central review confirmed ORR by RANO criteria for 2, however, 1 deemed nonmeasurable and another stable. A responding patient also noted improved mobility and alertness. CONCLUSIONS: H3 K27M-mutant diffuse gliomas occasionally occur in non-midline cerebrum. ONC201 exhibits activity in H3 K27M-mutant gliomas irrespective of CNS location.


Assuntos
Neoplasias Encefálicas , Glioma , Imidazóis , Mutação , Recidiva Local de Neoplasia , Receptores de Dopamina D2 , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/patologia , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Receptores de Dopamina D2/genética , Adulto , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Antagonistas dos Receptores de Dopamina D2/farmacologia , Pirimidinas/uso terapêutico , Prognóstico , Adulto Jovem , Seguimentos , Estudos de Coortes , Agonistas de Dopamina/uso terapêutico , Piridinas/uso terapêutico , Piridinas/farmacologia
6.
Cancer Res ; 84(7): 1084-1100, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266099

RESUMO

Eradication of acute myeloid leukemia (AML) is therapeutically challenging; many patients succumb to AML despite initially responding to conventional treatments. Here, we showed that the imipridone ONC213 elicits potent antileukemia activity in a subset of AML cell lines and primary patient samples, particularly in leukemia stem cells, while producing negligible toxicity in normal hematopoietic cells. ONC213 suppressed mitochondrial respiration and elevated α-ketoglutarate by suppressing α-ketoglutarate dehydrogenase (αKGDH) activity. Deletion of OGDH, which encodes αKGDH, suppressed AML fitness and impaired oxidative phosphorylation, highlighting the key role for αKGDH inhibition in ONC213-induced death. ONC213 treatment induced a unique mitochondrial stress response and suppressed de novo protein synthesis in AML cells. Additionally, ONC213 reduced the translation of MCL1, which contributed to ONC213-induced apoptosis. Importantly, a patient-derived xenograft from a relapsed AML patient was sensitive to ONC213 in vivo. Collectively, these findings support further development of ONC213 for treating AML. SIGNIFICANCE: In AML cells, ONC213 suppresses αKGDH, which induces a unique mitochondrial stress response, and reduces MCL1 to decrease oxidative phosphorylation and elicit potent antileukemia activity. See related commentary by Boët and Sarry, p. 950.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Apoptose
7.
Appl Immunohistochem Mol Morphol ; 32(2): 96-101, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073235

RESUMO

The presence of the histone 3 (H3) K27M mutation in diffuse midline glioma has implications for diagnosis, prognosis, and treatment, making rapid and accurate H3 K27M characterization vital for optimal treatment. This study evaluated an immunohistochemical assay using a commercially available monoclonal anti-H3 K27M in human central nervous system tumors. H3 K27M-positive glioma specimens were obtained from clinical sites with prior H3 K27M testing using local methods; negative control glioblastoma tissue was obtained from a tissue library. Specimens were stained with a rabbit anti-H3 K27M monoclonal antibody; slides were evaluated for the proportion of H3 K27M-positive tumor cells and staining intensity by a board-certified pathologist. H-score was calculated for each sample. Sensitivity, specificity, accuracy, repeatability, and reproducibility were evaluated. Fifty-one central nervous system specimens were stained (H3 K27M, n=41; H3 wild type, n=10). All H3 K27M-mutant specimens had positive nuclear staining, and most specimens had an H-score ≥150 (31/40, 77.5%). No nuclear staining occurred in H3 wild-type specimens; all cores in the normal tissue microarray were negative. Results were 100% sensitive, specific, and accurate for H3 K27M detection relative to local methods. Repeatability and reproducibility analyses were 100%, with a high degree of concordance for staining intensity. H3 K27M antigen was stable for at least 12 months at ambient temperature. Immunohistochemistry using a commercially available anti-H3 K27M monoclonal antibody provides a highly sensitive, specific, and stable method of establishing H3 K27M status in human glioma; this method may facilitate diagnosis in cases where sequencing is not feasible or available.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Coelhos , Animais , Histonas/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Imuno-Histoquímica , Reprodutibilidade dos Testes , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Anticorpos Monoclonais
8.
Cancer Biol Ther ; 24(1): 2202104, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37069726

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination. In this manuscript, we evaluated the effects of the PARP inhibitor olaparib in combination with ONC206 in human endometrioid endometrial cancer cell lines and in a genetically engineered mouse model of endometrial cancer. Our results showed that simultaneous exposure of endometrial cancer cells to olaparib and ONC206 resulted in synergistic anti-proliferative effects and increased cellular stress and apoptosis in both cell lines, compared to either drug alone. The combination treatment also decreased expression of the anti-apoptotic protein Bcl-2 and reduced phosphorylation of AKT and S6, with greater effects compared to either drug alone. In the transgenic model of endometrial cancer, the combination of olaparib and ONC206 resulted in a more significant reduction in tumor weight in obese and lean mice compared to ONC206 alone or olaparib alone, together with a considerably decreased Ki-67 and enhanced H2AX expression in obese and lean mice. These results suggest that this novel dual therapy may be worthy of further exploration in clinical trials.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Feminino , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Receptores Dopaminérgicos
9.
Neurooncol Adv ; 4(1): vdac143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382108

RESUMO

Background: ONC201, a dopamine receptor D2 (DRD2) antagonist and caseinolytic protease P (ClpP) agonist, has induced durable tumor regressions in adults with recurrent H3 K27M-mutant glioma. We report results from the first phase I pediatric clinical trial of ONC201. Methods: This open-label, multi-center clinical trial (NCT03416530) of ONC201 for pediatric H3 K27M-mutant diffuse midline glioma (DMG) or diffuse intrinsic pontine glioma (DIPG) employed a dose-escalation and dose-expansion design. The primary endpoint was the recommended phase II dose (RP2D). A standard 3 + 3 dose escalation design was implemented. The target dose was the previously established adult RP2D (625 mg), scaled by body weight. Twenty-two pediatric patients with DMG/DIPG were treated following radiation; prior lines of systemic therapy in addition to radiation were permitted providing sufficient time had elapsed prior to study treatment. Results: The RP2D of orally administered ONC201 in this pediatric population was determined to be the adult RP2D (625 mg), scaled by body weight; no dose-limiting toxicities (DLT) occurred. The most frequent treatment-emergent Grade 1-2 AEs were headache, nausea, vomiting, dizziness and increase in alanine aminotransferase. Pharmacokinetics were determined following the first dose: T 1/2, 8.4 h; T max, 2.1 h; C max, 2.3 µg/mL; AUC0-tlast, 16.4 hµg/mL. Median duration of treatment was 20.6 weeks (range 5.1-129). Five (22.7%) patients, all of whom initiated ONC201 following radiation and prior to recurrence, were alive at 2 years from diagnosis. Conclusions: The adult 625 mg weekly RP2D of ONC201 scaled by body weight was well tolerated. Further investigation of ONC201 for DMG/DIPG is warranted.

10.
Neuro Oncol ; 24(8): 1219-1229, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380705

RESUMO

Imaging response assessment is a cornerstone of patient care and drug development in oncology. Clinicians/clinical researchers rely on tumor imaging to estimate the impact of new treatments and guide decision making for patients and candidate therapies. This is important in brain cancer, where associations between tumor size/growth and emerging neurological deficits are strong. Accurately measuring the impact of a new therapy on tumor growth early in clinical development, where patient numbers are small, would be valuable for decision making regarding late-stage development activation. Current attempts to measure the impact of a new therapy have limited influence on clinical development, as determination of progression, stability or response does not currently account for individual tumor growth kinetics prior to the initiation of experimental therapies. Therefore, we posit that imaging-based response assessment, often used as a tool for estimating clinical effect, is incomplete as it does not adequately account for growth trajectories or biological characteristics of tumors prior to the introduction of an investigational agent. Here, we propose modifications to the existing framework for evaluating imaging assessment in primary brain tumors that will provide a more reliable understanding of treatment effects. Measuring tumor growth trajectories prior to a given intervention may allow us to more confidently conclude whether there is an anti-tumor effect. This updated approach to imaging-based tumor response assessment is intended to improve our ability to select candidate therapies for later-stage development, including those that may not meet currently sought thresholds for "response" and ultimately lead to identification of effective treatments.


Assuntos
Neoplasias Encefálicas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos como Assunto , Diagnóstico por Imagem , Humanos , Resultado do Tratamento
11.
Front Oncol ; 12: 789450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372029

RESUMO

ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP). The present study was to explore the anti-tumor potential effect of ONC201 in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer under obese (high fat diet) and lean (low fat diet) conditions. ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial-mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial-mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. These results suggest that ONC201 may be a promising therapeutic agent to be explored in future clinical trials in high-grade serous ovarian cancer.

12.
Clin Cancer Res ; 28(9): 1881-1895, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35417530

RESUMO

PURPOSE: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. EXPERIMENTAL DESIGN: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. RESULTS: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. CONCLUSIONS: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.


Assuntos
Glioblastoma , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidase Clp/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Peptídeo Hidrolases/genética , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Am J Cancer Res ; 12(2): 521-536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35261784

RESUMO

ONC206, a dopamine receptor D2 (DRD2) antagonist and imipridone, is a chemically modified derivative of ONC201. Recently, ONC206 and other imipridones were identified as activators of the mitochondrial protease ClpP, inducing downstream pathways that allow them to selectively target cancer cells. Clinical trials showed that ONC201, the first in class imipridone, was well tolerated and exhibited tumor regression in some solid tumors. Our goal was to evaluate the effect of ONC206 on cell proliferation and tumor growth in ovarian cancer cell lines and in a transgenic mouse model of high grade serous ovarian cancer (KpB model). ONC206 was more potent than ONC201 in inhibiting cell proliferation, as evidenced by a 10-fold decrease in IC50 for the SKOV3 and OVCAR5 cell lines. This was accompanied by the results that ONC206 significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, and inhibited adhesion and invasion in vitro. Treatment of obese and non-obese KpB mice with ONC206 elevated Bip and ClpP expression and reduced KI67, BCL-XL and DRD2 expression in the ovarian tumors. Our findings demonstrate that ONC206 has anti-tumorigenic effects in ovarian cancer as previously demonstrated by ONC201 but appears to be as well tolerated and more potent. Thus, ONC206 deserves further evaluation in clinical trials.

14.
Neuro Oncol ; 24(8): 1366-1374, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137228

RESUMO

BACKGROUND: Diffuse Midline Glioma (DMG) with the H3K27M mutation is a lethal childhood brain cancer, with patients rarely surviving 2 years from diagnosis. METHODS: We conducted a multi-site Phase 1 trial of the imipridone ONC201 for children with H3K27M-mutant glioma (NCT03416530). Patients enrolled on Arm D of the trial (n = 24) underwent serial lumbar puncture for cell-free tumor DNA (cf-tDNA) analysis and patients on all arms at the University of Michigan underwent serial plasma collection. We performed digital droplet polymerase chain reaction (ddPCR) analysis of cf-tDNA samples and compared variant allele fraction (VAF) to radiographic change (maximal 2D tumor area on MRI). RESULTS: Change in H3.3K27M VAF over time ("VAF delta") correlated with prolonged PFS in both CSF and plasma samples. Nonrecurrent patients that had a decrease in CSF VAF displayed a longer progression free survival (P = .0042). Decrease in plasma VAF displayed a similar trend (P = .085). VAF "spikes" (increase of at least 25%) preceded tumor progression in 8/16 cases (50%) in plasma and 5/11 cases (45.4%) in CSF. In individual cases, early reduction in H3K27M VAF predicted long-term clinical response (>1 year) to ONC201, and did not increase in cases of later-defined pseudo-progression. CONCLUSION: Our work demonstrates the feasibility and potential utility of serial cf-tDNA in both plasma and CSF of DMG patients to supplement radiographic monitoring. Patterns of change in H3K27M VAF over time demonstrate clinical utility in terms of predicting progression and sustained response and possible differentiation of pseudo-progression and pseudo-response.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Criança , DNA Tumoral Circulante/genética , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Histonas/genética , Humanos , Imidazóis , Mutação , Piridinas , Pirimidinas
15.
Clin Cancer Res ; 28(9): 1773-1782, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35022321

RESUMO

PURPOSE: Tumor dopamine-like DRD2 receptor expression is higher in pheochromocytoma-paraganglioma (PC-PG) compared with other cancers. ONC201 is a bitopic DRD2 antagonist with preclinical ONC201 activity in desmoplastic small round cell tumor (DSRCT). PATIENTS AND METHODS: Patients (N = 30) with neuroendocrine tumors were treated on this investigator-initiated trial (NCT03034200). ONC201 dose and schedule were 625 mg orally weekly in cohorts A (PC-PG) + B (other neuroendocrine tumors) and 625 mg orally on 2 consecutive days each week in cohort C, which included 5 responding patients. The primary endpoint was radiographic response measured using RECIST. Secondary endpoints included progression-free survival, overall survival, and safety. RESULTS: In arm A (n = 10; all PC-PG), 50% (5/10) exhibited a partial response (PR) and 2 additional patients had stable disease (SD) >3 months. Median duration of therapy for arm A patients was 9 months (range: 1.5-33 months) with 5 patients treated >1 year. In arm B (n = 12), there were 1 PR (DSRCT) and 2 SD (DSRCT; neuroblastoma) >3 months. Median duration of therapy in arm A was 18 months (range: 1-33 months) and arm B was 3 months (range: 1.5-33 months). Arm C PC-PG (N = 8) showed 1 PR and 7 SD at 3 months, with median duration of therapy >10 months. There was no decline in Karnofsky performance status at week 12 for 28 of 30 patients and no dose modification due to treatment-related adverse events. CONCLUSIONS: Oral ONC201 was well tolerated in patients with metastatic neuroendocrine tumors and associated with clinical benefit, including tumor responses, particularly in some patients with DSRCT and the majority of patients with PC-PG. See related commentary by Owen and Trikalinos, p. 1748.


Assuntos
Neoplasias das Glândulas Suprarrenais , Tumor Desmoplásico de Pequenas Células Redondas , Tumores Neuroendócrinos , Paraganglioma , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Humanos , Imidazóis , Tumores Neuroendócrinos/tratamento farmacológico , Feocromocitoma/tratamento farmacológico , Piridinas , Pirimidinas
16.
Adv Mater ; 34(2): e2100096, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676924

RESUMO

Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.


Assuntos
Organoides , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Masculino , Camundongos , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/uso terapêutico
17.
Am J Cancer Res ; 11(11): 5374-5387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873466

RESUMO

Endometrial cancer (EC) is a highly obesity-driven cancer, with limited treatment options. ONC201 is an imipridone that selectively antagonizes the G protein-coupled receptors dopamine receptor D2 and D3 (DRD2/3) and activates human mitochondrial caseinolytic protease P (ClpP). It is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through induction of the integrated stress response (ISR) as well as through stimulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and subsequent induction of apoptosis. ONC201 is being evaluated in Phase II clinical trials for solid tumors and hematological malignancies, including EC. ONC206 is an analog of ONC201 with nanomolar potency in Phase I clinical trials. This study evaluated the anti-tumor efficacy of ONC206 in EC cell lines and the Lkb1fl/flp53fl/fl genetically engineered mouse model of endometrioid EC. ONC206 revealed greater potency than ONC201 in the inhibition of proliferation in EC cell lines, with IC50 concentration ranges of 0.21-0.32 µM for ONC026 versus 2.14-3.53 µM for ONC201. ONC206 induced cellular stress, apoptosis and cell cycle G1 arrest, accompanied by inhibition of the AKT/mTOR/S6 pathways in EC cells. Diet-induced obesity accelerated tumor growth in Lkb1fl/flp53fl/fl mice. ONC206 inhibited EC tumor size and weight in both obese and lean mice after 4 weeks of treatment. Treatment with ONC206 led to a decrease in expression of Ki67, BCL-XL and phosphorylation of S6, as well as an increase in ClpP in endometrial tumors under both obese and lean conditions. Overall, the pre-clinical efficacy of ONC206 is promising and worthy of further exploration in clinical trials for endometrioid EC.

18.
Front Cell Dev Biol ; 9: 734699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900991

RESUMO

The purpose of this study was to examine whether the imipridone ONC201/TIC10 affects the metabolic and proliferative activity of medulloblastoma cells in vitro. Preclinical drug testing including extracellular flux analyses (agilent seahorse), MTT assays and Western blot analyses were performed in high and low c-myc-expressing medulloblastoma cells. Our data show that treatment with the imipridone ONC201/TIC10 leads to a significant inihibitory effect on the cellular viability of different medulloblastoma cells independent of c-myc expression. This effect is enhanced by glucose starvation. While ONC201/TIC10 decreases the oxidative consumption rates in D458 (c-myc high) and DAOY (c-myc low) cells extracellular acidification rates experienced an increase in D458 and a decrease in DAOY cells. Combined treatment with ONC201/TIC10 and the glycolysis inhibitor 2-Deoxyglucose led to a synergistic inhibitory effect on the cellular viability of medulloblastoma cells including spheroid models. In conclusion, our data suggest that ONC201/TIC10 has a profound anti-proliferative activity against medulloblastoma cells independent of c-myc expression. Metabolic targeting of medulloblastoma cells by ONC201/TIC10 can be significantly enhanced by an additional treatment with the glycolysis inhibitor 2-Deoxyglucose. Further investigations are warranted.

19.
Lancet Oncol ; 22(10): e456-e465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34592195

RESUMO

Integration of external control data, with patient-level information, in clinical trials has the potential to accelerate the development of new treatments in neuro-oncology by contextualising single-arm studies and improving decision making (eg, early stopping decisions). Based on a series of presentations at the 2020 Clinical Trials Think Tank hosted by the Society of Neuro-Oncology, we provide an overview on the use of external control data representative of the standard of care in the design and analysis of clinical trials. High-quality patient-level records, rigorous methods, and validation analyses are necessary to effectively leverage external data. We review study designs, statistical methods, risks, and potential distortions in using external data from completed trials and real-world data, as well as data sources, data sharing models, ongoing work, and applications in glioblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ensaios Clínicos Controlados como Assunto , Glioblastoma/tratamento farmacológico , Oncologia , Neurologia , Projetos de Pesquisa , Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Disseminação de Informação , Resultado do Tratamento
20.
Mol Pharmacol ; 100(4): 372-387, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353882

RESUMO

ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for antiproliferative effects. Curve-shift experiments using D2R-mediated ß-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. SIGNIFICANCE STATEMENT: ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. This study demonstrates that ONC201 antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anticancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.


Assuntos
Antineoplásicos/metabolismo , Antagonistas dos Receptores de Dopamina D2/metabolismo , Imidazóis/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Cricetinae , Cricetulus , Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Imidazóis/química , Imidazóis/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptores de Dopamina D2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA