Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5315-5332, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38401158

RESUMO

Actin barbed end-binding macrolides have been shown to inhibit cancer cell motility and invasion of extracellular matrix (ECM), evoking their potential utility as therapies for metastatic cancers. Unfortunately, the direct use of these compounds in clinical settings is impeded by their limited natural abundance, challenging total synthesis, and detrimental effects on normal tissues. To develop potent analogues of these compounds that are simpler to synthesize and compatible with cell-specific targeting systems, such as antibodies, we designed over 20 analogues of the acyclic side chain (tail) of the macrolide Mycalolide B. These analogues probed the contributions of four distinct regions of the tail towards the inhibition of actin polymerization and ECM invasion by human lung cancer A549 cells. We observed that two of these regions tolerate considerable substituent variability, and we identified a specific combination of substituents that leads to the optimal inhibition of the ECM invasion activity of A549 cells.


Assuntos
Actinas , Neoplasias Pulmonares , Humanos , Macrolídeos/farmacologia , Movimento Celular , Invasividade Neoplásica/prevenção & controle
2.
Biochem Soc Trans ; 51(4): 1505-1520, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37560910

RESUMO

Kinesin motor proteins couple mechanical movements in their motor domain to the binding and hydrolysis of ATP in their nucleotide-binding pocket. Forces produced through this 'mechanochemical' coupling are typically used to mobilize kinesin-mediated transport of cargos along microtubules or microtubule cytoskeleton remodeling. This review discusses the recent high-resolution structures (<4 Å) of kinesins bound to microtubules or tubulin complexes that have resolved outstanding questions about the basis of mechanochemical coupling, and how family-specific modifications of the motor domain can enable its use for motility and/or microtubule depolymerization.


Assuntos
Cinesinas , Tubulina (Proteína) , Cinesinas/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Miosinas
3.
Nat Commun ; 13(1): 4198, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859148

RESUMO

Kinesin-8s are dual-activity motor proteins that can move processively on microtubules and depolymerize microtubule plus-ends, but their mechanism of combining these distinct activities remains unclear. We addressed this by obtaining cryo-EM structures (2.6-3.9 Å) of Candida albicans Kip3 in different catalytic states on the microtubule lattice and on a curved microtubule end mimic. We also determined a crystal structure of microtubule-unbound CaKip3-ADP (2.0 Å) and analyzed the biochemical activity of CaKip3 and kinesin-1 mutants. These data reveal that the microtubule depolymerization activity of kinesin-8 originates from conformational changes of its motor core that are amplified by dynamic contacts between its extended loop-2 and tubulin. On curved microtubule ends, loop-1 inserts into preceding motor domains, forming head-to-tail arrays of kinesin-8s that complement loop-2 contacts with curved tubulin and assist depolymerization. On straight tubulin protofilaments in the microtubule lattice, loop-2-tubulin contacts inhibit conformational changes in the motor core, but in the ADP-Pi state these contacts are relaxed, allowing neck-linker docking for motility. We propose that these tubulin shape-induced alternations between pro-microtubule-depolymerization and pro-motility kinesin states, regulated by loop-2, are the key to the dual activity of kinesin-8 motors.


Assuntos
Cinesinas , Tubulina (Proteína) , Difosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
4.
J Am Chem Soc ; 143(18): 6847-6854, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938740

RESUMO

Cancer metastasis is a complex process involving highly motile tumor cells that breach tissue barriers, enter the bloodstream and lymphatic system, and disseminate throughout the body as circulating tumor cells. The primary cellular mechanism contributing to these critical events is the reorganization of the actin cytoskeleton. Mycalolide B (MycB) is an actin-targeting marine macrolide that can suppress proliferation, migration, and invasion of breast and ovarian cancer cells at low nanomolar doses. Through structure-activity relationship studies focused on the actin-binding tail region (C24-C35) of MycB, we identified a potent truncated derivative that inhibits polymerization of G-actin and severs F-actin by binding to actin's barbed end cleft. Biological analyses of this miniature MycB derivative demonstrate that it causes a rapid collapse of the actin cytoskeleton in ovarian cancer cells and impairs cancer cell motility and invasion of the extracellular matrix (ECM) by inhibiting invadopodia-mediated ECM degradation. These studies provide essential proof-of-principle for developing actin-targeting therapeutic agents to block cancer metastasis and establish a synthetically tractable barbed end-binding pharmacophore that can be further improved by adding targeting groups for precision drug design.


Assuntos
Actinas/antagonistas & inibidores , Antineoplásicos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Oxazóis/farmacologia , Actinas/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Matriz Extracelular/metabolismo , Feminino , Humanos , Toxinas Marinhas/síntese química , Toxinas Marinhas/química , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Protein Sci ; 29(8): 1707-1723, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472639

RESUMO

Kinesins are a diverse group of adenosine triphosphate (ATP)-dependent motor proteins that transport cargos along microtubules (MTs) and change the organization of MT networks. Shared among all kinesins is a ~40 kDa motor domain that has evolved an impressive assortment of motility and MT remodeling mechanisms as a result of subtle tweaks and edits within its sequence. Several elegant studies of different kinesin isoforms have exposed the purpose of structural changes in the motor domain as it engages and leaves the MT. However, few studies have compared the sequences and MT contacts of these kinesins systematically. Along with clever strategies to trap kinesin-tubulin complexes for X-ray crystallography, new advancements in cryo-electron microscopy have produced a burst of high-resolution structures that show kinesin-MT interfaces more precisely than ever. This review considers the MT interactions of kinesin subfamilies that exhibit significant differences in speed, processivity, and MT remodeling activity. We show how their sequence variations relate to their tubulin footprint and, in turn, how this explains the molecular activities of previously characterized mutants. As more high-resolution structures become available, this type of assessment will quicken the pace toward establishing each kinesin's design-function relationship.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos
6.
Hum Mol Genet ; 29(5): 766-784, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31919497

RESUMO

By using the Cre-mediated genetic switch technology, we were able to successfully generate a conditional knock-in mouse, bearing the KIF2A p.His321Asp missense point variant, identified in a subject with malformations of cortical development. These mice present with neuroanatomical anomalies and microcephaly associated with behavioral deficiencies and susceptibility to epilepsy, correlating with the described human phenotype. Using the flexibility of this model, we investigated RosaCre-, NestinCre- and NexCre-driven expression of the mutation to dissect the pathophysiological mechanisms underlying neurodevelopmental cortical abnormalities. We show that the expression of the p.His321Asp pathogenic variant increases apoptosis and causes abnormal multipolar to bipolar transition in newborn neurons, providing therefore insights to better understand cortical organization and brain growth defects that characterize KIF2A-related human disorders. We further demonstrate that the observed cellular phenotypes are likely to be linked to deficiency in the microtubule depolymerizing function of KIF2A.


Assuntos
Comportamento Animal , Cinesinas/fisiologia , Malformações do Desenvolvimento Cortical/patologia , Mutação , Neurônios/patologia , Proteínas Repressoras/fisiologia , Animais , Masculino , Malformações do Desenvolvimento Cortical/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
7.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388224

RESUMO

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Assuntos
Anormalidades Congênitas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Nefropatias/congênito , Rim/anormalidades , Cinesinas/genética , Mutação com Perda de Função , Microcefalia/genética , Proteínas Oncogênicas/genética , Animais , Anormalidades Congênitas/metabolismo , Citocinese/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Genes Letais , Estudos de Associação Genética/métodos , Loci Gênicos , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Masculino , Microcefalia/metabolismo , Microcefalia/patologia , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Linhagem , Fenótipo , Relação Estrutura-Atividade , Peixe-Zebra
8.
Sci Rep ; 8(1): 17243, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467396

RESUMO

Amplification of HER2 leads to development of HER2-positive (HER2+) cancers with high rates of metastasis compared to other cancer subtypes. The goal of this study was to probe the vulnerability of HER2+ cancer cells to a filamentous actin (F-actin) severing and capping toxin. The growth and viability of human HER2+ breast cancer (HCC1954) and ovarian cancer (SKOV3) cell lines were significantly impaired upon treatment with the marine macrolide mycalolide B (Myc B) at doses above 100 nanomolar. Further testing of Myc B in combination with the antibody-drug conjugate Trastuzumab-emtansine (T-DM1) led to improved killing of SKOV3 cells compared to either treatment alone. At sub-lethal doses, treatment of HER2+ cancer cells with Myc B resulted in rapid loss of leading edge protrusions and formation of aggresomes containing F-actin and the actin regulatory protein Cortactin. This correlated with robust inhibition of HER2+ cancer cell motility and invasion with Myc B treatment. In SKOV3 tumor xenograft assays, intratumoral injections of Myc B impaired HER2+ tumor growth and metastasis, with maximal effects observed in combination with systemic delivery of Trastuzumab. Metastasis of SKOV3 cells to the lungs following tail vein injection was also reduced by Myc B. Together, these findings provide rationale for targeting F-actin in combination with existing therapies for HER2+ cancers to reduce metastasis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Maitansina/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Oxazóis/administração & dosagem , Receptor ErbB-2/metabolismo , Trastuzumab/administração & dosagem , Ado-Trastuzumab Emtansina , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Toxinas Marinhas , Maitansina/administração & dosagem , Maitansina/farmacologia , Camundongos , Neoplasias Ovarianas/metabolismo , Oxazóis/farmacologia , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 9(1): 2628, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980677

RESUMO

Kinesin-13 proteins are major microtubule (MT) regulatory factors that catalyze removal of tubulin subunits from MT ends. The class-specific "neck" and loop 2 regions of these motors are required for MT depolymerization, but their contributing roles are still unresolved because their interactions with MT ends have not been observed directly. Here we report the crystal structure of a catalytically active kinesin-13 monomer (Kif2A) in complex with two bent αß-tubulin heterodimers in a head-to-tail array, providing a view of these interactions. The neck of Kif2A binds to one tubulin dimer and the motor core to the other, guiding insertion of the KVD motif of loop 2 in between them. AMPPNP-bound Kif2A can form stable complexes with tubulin in solution and trigger MT depolymerization. We also demonstrate the importance of the neck in modulating ATP turnover and catalytic depolymerization of MTs. These results provide mechanistic insights into the catalytic cycles of kinesin-13.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Polimerização , Multimerização Proteica , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Cinesinas/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/metabolismo
10.
Eukaryot Cell ; 14(8): 755-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024903

RESUMO

Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Morfogênese/fisiologia , Fuso Acromático/metabolismo , Adenosina Trifosfatases/metabolismo , Antifúngicos/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia
11.
J Mol Biol ; 426(17): 2997-3015, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24949858

RESUMO

The mitotic kinesin motor protein KIF14 is essential for cytokinesis during cell division and has been implicated in cerebral development and a variety of human cancers. Here we show that the mouse KIF14 motor domain binds tightly to microtubules and does not display typical nucleotide-dependent changes in this affinity. It also has robust ATPase activity but very slow motility. A crystal structure of the ADP-bound form of the KIF14 motor domain reveals a dramatically opened ATP-binding pocket, as if ready to exchange its bound ADP for Mg·ATP. In this state, the central ß-sheet is twisted ~10° beyond the maximal amount observed in other kinesins. This configuration has only been seen in the nucleotide-free states of myosins-known as the "rigor-like" state. Fitting of this atomic model to electron density maps from cryo-electron microscopy indicates a distinct binding configuration of the motor domain to microtubules. We postulate that these properties of KIF14 are well suited for stabilizing midbody microtubules during cytokinesis.


Assuntos
Cinesinas/química , Microtúbulos/química , Difosfato de Adenosina/química , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Cinética , Camundongos , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
12.
FEBS J ; 281(14): 3138-49, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24846670

RESUMO

Calpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca(2+) , which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca(2+) bound at the EF5-hand used for homodimer association. Three of the four Ca(2+) -binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca(2+) signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit. Database Structural data are available in the Protein Data Bank database under accession number 4OKH.


Assuntos
Calpaína/química , Motivos EF Hand , Proteínas Musculares/química , Sequência de Aminoácidos , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
13.
Science ; 343(6172): 795-8, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24531972

RESUMO

When polypeptide chains fold into a protein, hydrophobic groups are compacted in the center with exclusion of water. We report the crystal structure of an alanine-rich antifreeze protein that retains ~400 waters in its core. The putative ice-binding residues of this dimeric, four-helix bundle protein point inwards and coordinate the interior waters into two intersecting polypentagonal networks. The bundle makes minimal protein contacts between helices, but is stabilized by anchoring to the semi-clathrate water monolayers through backbone carbonyl groups in the protein interior. The ordered waters extend outwards to the protein surface and likely are involved in ice binding. This protein fold supports both the anchored-clathrate water mechanism of antifreeze protein adsorption to ice and the water-expulsion mechanism of protein folding.


Assuntos
Proteínas Anticongelantes Tipo I/química , Proteínas de Peixes/química , Dobramento de Proteína , Alanina/química , Animais , Cristalografia por Raios X , Linguado , Gelo , Estrutura Secundária de Proteína , Água/química
14.
Mol Cancer Res ; 10(7): 881-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22589410

RESUMO

KIT receptor is required for mast cell development, survival, and migration toward its ligand stem cell factor (SCF). Many solid tumors express SCF and this leads to mast cell recruitment to tumors and release of mediators linked to tumor angiogenesis, growth, and metastasis. Here, we investigate whether FES protein-tyrosine kinase, a downstream effector of KIT signaling in mast cells, is required for migration of mast cells toward SCF-expressing mammary tumors. Using a novel agarose drop assay for chemotaxis of bone marrow-derived mast cells (BMMC) toward SCF, we found that defects in chemotaxis of fes-null BMMCs correlated with disorganized microtubule networks in polarized cells. FES displayed partial colocalization with microtubules in polarized BMMCs and has at least two direct microtubule binding sites within its N-terminal F-BAR and SH2 domains. An oligomerization-disrupting mutation within the Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain had no effect on microtubule binding, whereas microtubule binding to the SH2 domain was dependent on the phosphotyrosine-binding pocket. FES involvement in mast cell recruitment to tumors was tested using the AC2M2 mouse mammary carcinoma model. These tumor cells expressed SCF and promoted BMMC recruitment in a KIT- and FES-dependent manner. Engraftment of AC2M2 orthotopic and subcutaneous tumors in control or fes-null mice, revealed a key role for FES in recruitment of mast cells to the tumor periphery. This may contribute to the reduced tumor growth and metastases observed in fes-null mice compared with control mice. Taken together, FES is a potential therapeutic target to limit the progression of tumors with stromal mast cell involvement.


Assuntos
Células da Medula Óssea , Neoplasias Mamárias Experimentais , Mastócitos , Proteínas Proto-Oncogênicas c-fes , Proteínas Proto-Oncogênicas c-kit , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/terapia , Mastócitos/citologia , Mastócitos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
15.
Proteins ; 80(4): 1016-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22493778

RESUMO

Kar3 kinesins are microtubule (MT) minus-end-directed motors with pleiotropic functions in mitotic spindle formation and nuclear movement in budding and fission yeasts. A Kar3-like kinesin is also expressed by the filamentous fungus Ashbya gossypi, which exhibits different nuclear movement challenges from its yeast relatives. Presented here is a 2.35 Å crystal structure and enzymatic analysis of the AgKar3 motor domain (AgKar3MD). Compared to the previously published Saccharomyces cerevisiae Kar3MD structure (ScKar3MD), AgKar3MD displays differences in the conformation of some of its nucleotide-binding motifs and peripheral elements. Unlike ScKar3MD, the salt bridge between Switch I and Switch II in AgKar3MD is broken. Most of the Switch I, and the adjoining region of helix α3, are also disordered instead of bending into the active site cleft as is observed in ScKar3MD. These aspects of AgKar3MD are highly reminiscent of the ScKar3 R598A mutant that disrupts the Switch I-Switch II salt bridge and impairs MT-stimulated ATPase activity of the motor. Subtle differences in the disposition of secondary structure elements in the small lobe (ß1a, ß1b, and ß1c) at the edge of the MD are also apparent even though it contains approximately the same number of residues as ScKar3. These differences may reflect the unique enzymatic properties we measured for this motor, which include a lower MT-stimulated ATPase rate relative to ScKar3, or they could relate to its interactions with different regulatory companion proteins than its budding yeast counterpart.


Assuntos
Ascomicetos/química , Proteínas Fúngicas/química , Cinesinas/química , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Ascomicetos/classificação , Ascomicetos/enzimologia , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X/métodos , Ativação Enzimática , Proteínas Fúngicas/classificação , Proteínas Fúngicas/isolamento & purificação , Cinesinas/classificação , Cinesinas/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
16.
Chem Biol ; 17(8): 802-7, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20797609

RESUMO

Actin filament-disrupting marine macrolides are promising templates from which to design therapeutics against cancer and other diseases that co-opt the actin cytoskeleton. Typically, these macrolides form either a 1:1 or 2:1 actin-macrolide complex where their aliphatic side chain, or "tail," has been reported to convey the major determinant of cytotoxicity. We now report the structure of the marine macrolide lobophorolide bound to actin with a unique 2:2 stoichiometry in which two lobophorolide molecules cooperate to form a dimerization interface that is composed entirely of the macrolide "ring" region, and each molecule of lobophorolide interacts with both actin subunits via their ring and tail regions to tether the subunits together. This binding mode imposes multiple barriers against microfilament stability and holds important implications for development of actin-targeting drugs and the evolution of macrolide biosynthetic enzymes.


Assuntos
Actinas/química , Actinas/metabolismo , Macrolídeos/química , Macrolídeos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Piranos/química , Piranos/farmacologia , Animais , Cristalografia por Raios X , Macrolídeos/metabolismo , Modelos Moleculares , Polimerização/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Piranos/metabolismo , Coelhos , Especificidade por Substrato
17.
Proc Natl Acad Sci U S A ; 105(35): 12867-72, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18725645

RESUMO

We present a structurally dynamic model for nucleotide- and actin-induced closure of the actin-binding cleft of myosin, based on site-directed spin labeling and electron paramagnetic resonance (EPR) in Dictyostelium myosin II. The actin-binding cleft is a solvent-filled cavity that extends to the nucleotide-binding pocket and has been predicted to close upon strong actin binding. Single-cysteine labeling sites were engineered to probe mobility and accessibility within the cleft. Addition of ADP and vanadate, which traps the posthydrolysis biochemical state, influenced probe mobility and accessibility slightly, whereas actin binding caused more dramatic changes in accessibility, consistent with cleft closure. We engineered five pairs of cysteine labeling sites to straddle the cleft, each pair having one label on the upper 50-kDa domain and one on the lower 50-kDa domain. Distances between spin-labeled sites were determined from the resulting spin-spin interactions, as measured by continuous wave EPR for distances of 0.7-2 nm or pulsed EPR (double electron-electron resonance) for distances of 1.7-6 nm. Because of the high distance resolution of EPR, at least two distinct structural states of the cleft were resolved. Each of the biochemical states tested (prehydrolysis, posthydrolysis, and rigor), reflects a mixture of these structural states, indicating that the coupling between biochemical and structural states is not rigid. The resulting model is much more dynamic than previously envisioned, with both open and closed conformations of the cleft interconverting, even in the rigor actomyosin complex.


Assuntos
Actinas/metabolismo , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Marcadores de Spin , Actomiosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Sítios de Ligação , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Mutantes/metabolismo , Miosina Tipo II/química , Ligação Proteica , Estrutura Secundária de Proteína , Solventes
18.
Org Biomol Chem ; 6(12): 2076-84, 2008 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-18528569

RESUMO

The small molecule blebbistatin is now a front line tool in the study of myosin function. Chemical modification of the tricyclic core of blebbistatin could deliver the next generation of myosin inhibitors and to help address this we report here on the impact of structural changes in the methyl-substituted aromatic ring of blebbistatin on its biological activity. Chemical methods for the preparation of isomeric methyl-containing analogues are reported and a series of co-crystal structures are used to rationalise the observed variations in their biological activity. These studies further support the view that the previously identified binding mode of blebbistatin to Dictyostelium discoideum myosin II is of relevance to its mode of action. A discussion of the role that these observations have on planning the synthesis of focused libraries of blebbistatin analogues is also provided including an assessment of possibilities by computational methods. These studies are ultimately directed at the development of novel myosin inhibitors with improved affinity and different selectivity profiles from blebbistatin itself.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Miosinas/antagonistas & inibidores , Cristalografia , Espectrometria de Massas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
19.
J Mol Biol ; 371(4): 959-70, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17599353

RESUMO

(PTXs) are polyether macrolides found in certain dinoflagellates, sponges and shellfish, and have been associated with diarrhetic shellfish poisoning. In addition to their in vivo toxicity, some PTXs are potently cytotoxic in human cancer cell lines. Recent studies have demonstrated that disruption of the actin cytoskeleton may be a key function of these compounds, although no clarification of their mechanism of action at a molecular level was available. We have obtained an X-ray crystal structure of PTX-2 bound to actin, which, in combination with analyses of the effect of PTX-2 on purified actin filament dynamics, provides a molecular explanation for its effects on actin. PTX-2 formed a 1:1 complex with actin and engaged a novel site between subdomains 1 and 3. Based on models of the actin filament, PTX binding would disrupt key lateral contacts between the PTX-bound actin monomer and the lower lateral actin monomer within the filament, thereby capping the barbed-end. The location of this binding position within the interior of the filament indicates that it may not be accessible once polymerization has occurred, a hypothesis supported by our observation that PTX-2 caused filament capping without inducing filament severing. This mode of action is unique, as other actin filament destabilizing toxins appear to exclusively disrupt longitudinal monomer contacts, allowing many of them to sever filaments in addition to capping them. Examination of the PTX-binding site on actin provides a rationalization for the structure-activity relationships observed in vivo and in vitro, and may provide a basis for predicting toxicity of PTX analogues.


Assuntos
Actinas/química , Actinas/metabolismo , Furanos/química , Furanos/metabolismo , Piranos/química , Piranos/metabolismo , Animais , Cristalografia por Raios X , Furanos/farmacologia , Macrolídeos , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Piranos/farmacologia , Coelhos , Relação Estrutura-Atividade
20.
Proc Natl Acad Sci U S A ; 102(41): 14527-32, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16192358

RESUMO

Marine macrolides that disrupt the actin cytoskeleton are promising candidates for cancer treatment. Here, we present the actin-bound x-ray crystal structures of reidispongiolide A and C and sphinxolide B, three marine macrolides found among a recently discovered family of cytotoxic compounds. Their structures allow unequivocal assignment of the absolute configuration for each compound. A comparison of their actin-binding site to macrolides found in the trisoxazole family, as well as the divalent macrolide, swinholide A, reveals the existence of a common binding surface for a defined segment of their macrocyclic ring. This surface is located on a hydrophobic patch adjacent to the cleft separating domains 1 and 3 at the barbed-end of actin. The large area surrounding this surface accommodates a wide variety of conformations and designs observed in the macrocyclic component of barbed-end-targeting macrolides. Conversely, the binding pocket for the macrolide tail, located within the cleft itself, shows very limited variation. Functional characterization of these macrolides by using in vitro actin filament severing and polymerization assays demonstrate the necessity of the N-methyl-vinylformamide moiety at the terminus of the macrolide tail for toxin potency. These analyses also show the importance of stable interactions between the macrocyclic ring and the hydrophobic patch on actin for modifying filament structure and how this stability can be compromised by subtle changes in macrolactone ring composition. By identifying the essential components of these complex natural products that underlie their high actin affinity, we have established a framework for designing new therapeutic agents.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cetonas/química , Macrolídeos/química , Toxinas Marinhas/química , Modelos Moleculares , Poríferos/química , Animais , Cristalografia por Raios X , Cetonas/isolamento & purificação , Cetonas/metabolismo , Cetonas/toxicidade , Macrolídeos/isolamento & purificação , Macrolídeos/metabolismo , Macrolídeos/toxicidade , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Nova Caledônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA