Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 30(8): 1083-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820007

RESUMO

Somatic motor neurons are selectively vulnerable in spinal muscular atrophy (SMA), which is caused by a deficiency of the ubiquitously expressed survival of motor neuron protein. However, some motor neuron groups, including oculomotor and trochlear (ocular), which innervate eye muscles, are for unknown reasons spared. To reveal mechanisms of vulnerability and resistance in SMA, we investigate the transcriptional dynamics in discrete neuronal populations using laser capture microdissection coupled with RNA sequencing (LCM-seq). Using gene correlation network analysis, we reveal a TRP53-mediated stress response that is intrinsic to all somatic motor neurons independent of their vulnerability, but absent in relatively resistant red nucleus and visceral motor neurons. However, the temporal and spatial expression analysis across neuron types shows that the majority of SMA-induced modulations are cell type-specific. Using Gene Ontology and protein network analyses, we show that ocular motor neurons present unique disease-adaptation mechanisms that could explain their resilience. Specifically, ocular motor neurons up-regulate (1) Syt1, Syt5, and Cplx2, which modulate neurotransmitter release; (2) the neuronal survival factors Gdf15, Chl1, and Lif; (3) Aldh4, that protects cells from oxidative stress; and (4) the caspase inhibitor Pak4. Finally, we show that GDF15 can rescue vulnerable human spinal motor neurons from degeneration. This confirms that adaptation mechanisms identified in resilient neurons can be used to reduce susceptibility of vulnerable neurons. In conclusion, this in-depth longitudinal transcriptomics analysis in SMA reveals novel cell type-specific changes that, alone and combined, present compelling targets, including Gdf15, for future gene therapy studies aimed toward preserving vulnerable motor neurons.


Assuntos
Adaptação Fisiológica/fisiologia , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neuroproteção/genética , Adaptação Fisiológica/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Olho/inervação , Predisposição Genética para Doença/genética , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Microdissecção e Captura a Laser , Camundongos , Camundongos Knockout , Córtex Motor/patologia , Análise de Sequência de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Stem Cell Reports ; 12(6): 1329-1341, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31080111

RESUMO

Oculomotor neurons, which regulate eye movement, are resilient to degeneration in the lethal motor neuron disease amyotrophic lateral sclerosis (ALS). It would be highly advantageous if motor neuron resilience could be modeled in vitro. Toward this goal, we generated a high proportion of oculomotor neurons from mouse embryonic stem cells through temporal overexpression of PHOX2A in neuronal progenitors. We demonstrate, using electrophysiology, immunocytochemistry, and RNA sequencing, that in vitro-generated neurons are bona fide oculomotor neurons based on their cellular properties and similarity to their in vivo counterpart in rodent and man. We also show that in vitro-generated oculomotor neurons display a robust activation of survival-promoting Akt signaling and are more resilient to the ALS-like toxicity of kainic acid than spinal motor neurons. Thus, we can generate bona fide oculomotor neurons in vitro that display a resilience similar to that seen in vivo.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Diferenciação Celular , Neurônios Motores/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais , Esclerose Lateral Amiotrófica/patologia , Animais , Sobrevivência Celular , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios Motores/patologia , Células-Tronco Embrionárias Murinas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Sci Rep ; 6: 25960, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180807

RESUMO

The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3ß phosphorylation and ß-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1(G93A) ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Nervo Oculomotor/metabolismo , Receptores de Somatomedina/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Nervo Oculomotor/citologia , Fosforilação , Fatores de Proteção , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , beta Catenina/metabolismo
4.
J Peripher Nerv Syst ; 18(1): 30-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23521641

RESUMO

Peripheral nerve injury triggers the activation of the small GTPase RhoA in spinal motor and peripheral sensory neurons. C3 transferase, an exoenzyme produced by Clostridium botulinum that inactivates RhoA by ADP-ribosylation, has been successfully applied in central nervous system (CNS) lesion models to facilitate regeneration functionally and morphologically. Until now it has not been demonstrated if C3bot exerts positive effects on peripheral axon regeneration as well. In organotypic spinal cord preparations, C3bot reduced axonal growth of motoneurons, while no effect on sensory axon outgrowth from dorsal root ganglia (DRG) explants was observed. Enzymatically inactive C3E174Q was ineffective in both culture models. Spinal cord slices exhibited a significant increase in microglia/macrophages after treatment with C3bot suggesting an inflammatory component in the inhibition of axon growth. C3bot or C3E174Q were then applied into conduits implanted after transection of the sciatic nerve in rats. Functional evaluation by electrophysiology, nociception, and walking track tests did not show any significant difference between groups with active or mutant C3E174Q . Transmission electron microscopy of the regenerated nerves revealed no significant differences in the number of myelinated and unmyelinated axons 6 weeks after surgery. Compared to the CNS, the functional significance of RhoA may be limited during nerve regeneration in a growth-promoting environment.


Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Botulínicas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuropatia Ciática/patologia , Neuropatia Ciática/fisiopatologia , ADP Ribose Transferases/genética , Animais , Animais Recém-Nascidos , Axotomia , Toxinas Botulínicas/genética , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Mutação/genética , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Neuropatia Ciática/tratamento farmacológico , Medula Espinal/citologia , Fatores de Tempo
5.
Neurotherapeutics ; 10(2): 354-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23440700

RESUMO

Ventral spinal root avulsion causes complete denervation of muscles in the limb and also progressive death of segmental motoneurons (MN) leading to permanent paralysis. The chances for functional recovery after ventral root avulsion are very poor owing to the loss of avulsed neurons and the long distance that surviving neurons have to re-grow axons from the spinal cord to the corresponding targets. Following unilateral avulsion of L4, L5 and L6 spinal roots in adult rats, we performed an intraspinal transplant of mesenchymal stem cells (MSC) and surgical re-implantation of the avulsed roots. Four weeks after avulsion the survival of MN in the MSC-treated animals was significantly higher than in vehicle-injected rats (45% vs. 28%). Re-implantation of the avulsed roots in the injured spinal cord allowed the regeneration of motor axons. By combining root re-implantation and MSC transplant the number of surviving MN at 28 days post-injury was higher (60%) than in re-implantation alone animals (46%). Electromyographic tests showed evidence of functional re-innervation of anterior tibialis and gastrocnemius muscles by the regenerated motor axons only in rats with the combined treatment. These results indicate that MSC are helpful in enhancing neuronal survival and increased the regenerative growth of injured axons. Surgical re-implantation and MSC grafting combined had a synergic neuroprotective effect on MN and on axonal regeneration and muscle re-innervation after spinal root avulsion.


Assuntos
Axônios/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso/prevenção & controle , Raízes Nervosas Espinhais , Animais , Comportamento Animal/fisiologia , Contagem de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Neuritos/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
6.
Mol Neurobiol ; 47(2): 770-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23275175

RESUMO

In this study, we screened in vitro the different capabilities of trophic factors with promising effect for enhancing selective regeneration and thus promoting specific reinnervation of target organs after peripheral nerve regeneration. We found that FGF-2 (18 kDa) was the trophic factor that exerted the most selective effect in promoting neurite outgrowth of spinal motoneurons both in terms of elongation and arborization. The mechanism underlying this effect on neuritogenesis seems related to FGF-2 enhancing the interaction between FGFR-1 and PSA-NCAM. The interaction of these two receptors is important during the early stages of neuritogenesis and pathfinding, while integrin alpha7B subunit seems to play a role during neurite stabilization.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Neurônios Motores/fisiologia , Neuritos/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA