Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 323(2): E133-E144, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723227

RESUMO

Mammalian target of rapamycin (mTOR) kinase is an essential hub where nutrients and growth factors converge to control cellular metabolism. mTOR interacts with different accessory proteins to form complexes 1 and 2 (mTORC), and each complex has different intracellular targets. Although mTORC1's role in ß-cells has been extensively studied, less is known about mTORC2's function in ß-cells. Here, we show that mice with constitutive and inducible ß-cell-specific deletion of RICTOR (ßRicKO and ißRicKO mice, respectively) are glucose intolerant due to impaired insulin secretion when glucose is injected intraperitoneally. Decreased insulin secretion in ßRicKO islets was caused by abnormal actin polymerization. Interestingly, when glucose was administered orally, no difference in glucose homeostasis and insulin secretion were observed, suggesting that incretins are counteracting the mTORC2 deficiency. Mechanistically, glucagon-like peptide-1 (GLP-1), but not gastric inhibitory polypeptide (GIP), rescued insulin secretion in vivo and in vitro by improving actin polymerization in ßRicKO islets. In conclusion, mTORC2 regulates glucose-stimulated insulin secretion by promoting actin filament remodeling.NEW & NOTEWORTHY The current studies uncover a novel mechanism linking mTORC2 signaling to glucose-stimulated insulin secretion by modulation of the actin filaments. This work also underscores the important role of GLP-1 in rescuing defects in insulin secretion by modulating actin polymerization and suggests that this effect is independent of mTORC2 signaling.


Assuntos
Actinas , Insulina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Serina-Treonina Quinases TOR/metabolismo
2.
Diabetes ; 69(6): 1206-1218, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32245801

RESUMO

Endocrine cells of the pancreatic islet interact with their microenvironment to maintain tissue homeostasis. Communication with local macrophages is particularly important in this context, but the homeostatic functions of human islet macrophages are not known. In this study, we show that the human islet contains macrophages in perivascular regions that are the main local source of the anti-inflammatory cytokine interleukin-10 (IL-10) and the metalloproteinase MMP9. Macrophage production and secretion of these homeostatic factors are controlled by endogenous purinergic signals. In obese and diabetic states, macrophage expression of purinergic receptors MMP9 and IL-10 is reduced. We propose that in those states, exacerbated ß-cell activity due to increased insulin demand and increased cell death produce high levels of ATP that downregulate purinergic receptor expression. Loss of ATP sensing in macrophages may reduce their secretory capacity.


Assuntos
Ilhotas Pancreáticas/citologia , Macrófagos/fisiologia , Purinas/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Cálcio/metabolismo , Citocinas , Citosol/química , Citosol/fisiologia , Diabetes Mellitus/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Ilhotas Pancreáticas/diagnóstico por imagem , Camundongos , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Transcriptoma
3.
Front Endocrinol (Lausanne) ; 11: 602519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519711

RESUMO

Pancreatic islets are clusters of endocrine cells that secrete different hormones to regulate blood glucose levels. Efficient hormone secretion requires a close interaction of endocrine cells with their vascular system. Islets receive blood through feeding arteriole(s) that branch into capillaries made of endothelial cells covered by pericytes. While a lot is known about rodent islet blood vessels, the structure and function of the human islet microvasculature has been less investigated. In this study, we used living pancreas slices from non-diabetic human donors to examine the function of human islet blood vessels. Living human pancreas slices were incubated with a membrane permeant calcium indicator and pericytes/smooth muscle cells were visualized with a fluorescent antibody against the mural cell marker NG2 proteoglycan. By confocal microscopy, we simultaneously recorded changes in the diameter of lectin-labeled blood vessels and cytosolic calcium levels in mural cells in islets. We tested several stimuli with vasoactive properties, such as norepinephrine, endothelin-1 and adenosine and compared human vascular responses with those previously published for mouse islet blood vessels. Norepinephrine and endothelin-1 significantly constricted human islet feeding arterioles, while adenosine dilated them. Islet capillaries were less responsive and only 15-20% of the mouse and human islet capillary network showed vasomotion. Nevertheless, in these responsive regions, norepinephrine and endothelin-1 decreased both mouse and human islet capillary diameter. Changes in islet blood vessel diameter were coupled to changes in cytosolic calcium levels in adjacent mouse and human islet mural cells. Our study shows that mural cells in islets are the targets of different regulatory mechanisms of islet blood perfusion. Several alterations of the human islet microvasculature occur during diabetes progression. Elucidating their functional consequences in future studies will be critical for our understanding of disease pathogenesis.


Assuntos
Endotélio Vascular/citologia , Ilhotas Pancreáticas/irrigação sanguínea , Microvasos/fisiologia , Pâncreas/citologia , Pericitos/citologia , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
4.
Cell Metab ; 27(3): 630-644.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514070

RESUMO

Efficient insulin secretion requires a well-functioning pancreatic islet microvasculature. The dense network of islet capillaries includes the islet pericyte, a cell that has barely been studied. Here we show that islet pericytes help control local blood flow by adjusting islet capillary diameter. Islet pericytes cover 40% of the microvasculature, are contractile, and are innervated by sympathetic axons. Sympathetic adrenergic input increases pericyte activity and reduces capillary diameter and local blood flow. By contrast, activating beta cells by increasing glucose concentration inhibits pericytes, dilates islet capillaries, and increases local blood flow. These effects on pericytes are mediated by endogenous adenosine, which is likely derived from ATP co-released with insulin. Pericyte coverage of islet capillaries drops drastically in type 2 diabetes, suggesting that, under diabetic conditions, islets lose this mechanism to control their own blood supply. This may lead to inadequate insulin release into the circulation, further deteriorating glycemic control.


Assuntos
Capilares , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Pericitos , Adenosina/metabolismo , Adolescente , Adulto , Animais , Capilares/citologia , Capilares/inervação , Capilares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Pericitos/citologia , Pericitos/metabolismo , Fluxo Sanguíneo Regional
5.
Diabetologia ; 61(1): 182-192, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884198

RESUMO

AIMS/HYPOTHESIS: Tissue-resident macrophages sense the microenvironment and respond by producing signals that act locally to maintain a stable tissue state. It is now known that pancreatic islets contain their own unique resident macrophages, which have been shown to promote proliferation of the insulin-secreting beta cell. However, it is unclear how beta cells communicate with islet-resident macrophages. Here we hypothesised that islet macrophages sense changes in islet activity by detecting signals derived from beta cells. METHODS: To investigate how islet-resident macrophages respond to cues from the microenvironment, we generated mice expressing a genetically encoded Ca2+ indicator in myeloid cells. We produced living pancreatic slices from these mice and used them to monitor macrophage responses to stimulation of acinar, neural and endocrine cells. RESULTS: Islet-resident macrophages expressed functional purinergic receptors, making them exquisite sensors of interstitial ATP levels. Indeed, islet-resident macrophages responded selectively to ATP released locally from beta cells that were physiologically activated with high levels of glucose. Because ATP is co-released with insulin and is exclusively secreted by beta cells, the activation of purinergic receptors on resident macrophages facilitates their awareness of beta cell secretory activity. CONCLUSIONS/INTERPRETATION: Our results indicate that islet macrophages detect ATP as a proxy signal for the activation state of beta cells. Sensing beta cell activity may allow macrophages to adjust the secretion of factors to promote a stable islet composition and size.


Assuntos
Trifosfato de Adenosina/metabolismo , Macrófagos/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Animais , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos
6.
J Vis Exp ; (127)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28930993

RESUMO

Insulin secretion plays a central role in glucose homeostasis under normal physiological conditions as well as in disease. Current approaches to study insulin granule exocytosis either use electrophysiology or microscopy coupled to the expression of fluorescent reporters. However most of these techniques have been optimized for clonal cell lines or require dissociating pancreatic islets. In contrast, the method presented here allows for real time visualization of insulin granule exocytosis in intact pancreatic islets. In this protocol, we first describe the viral infection of isolated pancreatic islets with adenovirus that encodes a pH-sensitive green fluorescent protein (GFP), pHluorin, coupled to neuropeptide Y (NPY). Second, we describe the confocal imaging of islets five days after viral infection and how to monitor the insulin granule secretion. Briefly, the infected islets are placed on a coverslip on an imaging chamber and imaged under an upright laser-scanning confocal microscope while being continuously perfused with extracellular solution containing various stimuli. Confocal images spanning 50 µm of the islet are acquired as time-lapse recordings using a fast-resonant scanner. The fusion of insulin granules with the plasma membrane can be followed over time. This procedure also allows for testing a battery of stimuli in a single experiment, is compatible with both mouse and human islets, and can be combined with various dyes for functional imaging (e.g., membrane potential or cytosolic calcium dyes).


Assuntos
Grânulos Citoplasmáticos/metabolismo , Exocitose/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Microscopia Confocal/métodos , Neuropeptídeo Y/metabolismo , Animais , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Camundongos
7.
FASEB J ; 31(11): 4734-4744, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28687610

RESUMO

In pancreatic ß cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in ß cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gß5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gß5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gß5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic ß-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gß5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Proteínas RGS/genética , Receptor Muscarínico M3/genética
8.
Nat Commun ; 8: 14295, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145434

RESUMO

ß-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the ß-arrestin-2 gene, barr2, in ß-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in ß-arrestin-2 (barr2) deficient ß-cells. In human ß-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in ß-cells. Importantly, overexpression of barr2 in ß-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of ß-cell function, which may serve as a new target to improve ß-cell function.


Assuntos
Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais/genética , beta-Arrestina 2/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dieta Hiperlipídica , Expressão Gênica , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , beta-Arrestina 2/metabolismo
9.
Cell Rep ; 17(12): 3281-3291, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009296

RESUMO

In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity.


Assuntos
Diabetes Mellitus/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animais , AMP Cíclico/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/patologia , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Serotonina/biossíntese , Transdução de Sinais , Receptor 5-HT1F de Serotonina
10.
Cell ; 154(6): 1390-400, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034256

RESUMO

Dysfunction of ENaC, the epithelial sodium channel that regulates salt and water reabsorption in epithelia, causes several human diseases, including cystic fibrosis (CF). To develop a global understanding of molecular regulators of ENaC traffic/function and to identify of candidate CF drug targets, we performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells. Screening over 6,000 genes identified over 1,500 candidates, evenly divided between channel inhibitors and activators. Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of (diacylglycerol kinase, iota) DGKι, a protein involved in PiP2 metabolism, downgrades ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.


Assuntos
Fibrose Cística/tratamento farmacológico , Terapia de Alvo Molecular , Linhagem Celular , Células Cultivadas , Canais Epiteliais de Sódio/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , RNA Interferente Pequeno
11.
Pflugers Arch ; 463(6): 819-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526458

RESUMO

Cystic fibrosis lung disease is caused by reduced Cl(-) secretion along with enhanced Na(+) absorption, leading to reduced airway surface liquid and compromised mucociliary clearance. Therapeutic strategies have been developed to activate cystic fibrosis transmembrane conductance regulator (CFTR) or to overcome enhanced Na(+) absorption by the epithelial Na(+) channel (ENaC). In a split-ubiquitin-based two-hybrid screening, we identified stress-associated ER protein 1 (SERP1)/ribosome-associated membrane protein 4 as a novel interacting partner for the ENaC ß-subunit. SERP1 is induced during cell stress and interacts with the molecular chaperone calnexin, thus controlling early biogenesis of membrane proteins. ENaC activity was measured in the human airway epithelial cell lines H441 and A549 and in voltage clamp experiments with ENaC-overexpressing Xenopus oocytes. We found that expression of SERP1 strongly inhibits amiloride-sensitive Na(+) transport. SERP1 coimmunoprecipitated and colocalized with ßENaC in the endoplasmic reticulum, together with the chaperone calnexin. In contrast to the inhibitory effects on ENaC, SERP1 appears to promote expression of CFTR. Taken together, SERP1 is a novel cochaperone and regulator of ENaC expression.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas de Membrana/metabolismo , Oócitos/metabolismo , Mucosa Respiratória/metabolismo , Estresse Fisiológico/fisiologia , Animais , Calnexina/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Hipóxia/metabolismo , Oócitos/citologia , Mucosa Respiratória/citologia , Xenopus laevis
12.
Methods Mol Biol ; 742: 249-64, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21547737

RESUMO

As several genomes have been sequenced, post-genomic approaches like transcriptomics and proteomics, identifying gene products differentially expressed in association with a given pathology, have held promise both of understanding the pathways associated with the respective disease and as a fast track to therapy. Notwithstanding, these approaches cannot distinguish genes and proteins with mere secondary pathological association from those primarily involved in the basic defect(s). New global strategies and tools identifying gene products responsible for the basic cellular defect(s) in CF pathophysiology currently being performed are presented here. These include high-content screens to determine proteins affecting function and trafficking of CFTR and ENaC.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/metabolismo , Canais Epiteliais de Sódio , Genômica/métodos , Linhagem Celular Tumoral , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Bloqueadores do Canal de Sódio Epitelial , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Fluorescência , Inativação Gênica , Ensaios de Triagem em Larga Escala , Humanos , Microscopia Confocal , Mutação , Plasmídeos/metabolismo , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Deleção de Sequência , Espectrometria de Fluorescência , Transfecção
13.
Biol Chem ; 392(1-2): 125-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21194364

RESUMO

Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.


Assuntos
Canais de Cloreto/metabolismo , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Anoctamina-1 , Bestrofinas , Células Epiteliais/química , Humanos
14.
Pflugers Arch ; 459(3): 485-97, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19823864

RESUMO

Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca(2+) signaling and activation of Ca(2+)-dependent Cl(-) (TMEM16A) and K(+) (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca(2+) deposits. hBest1 is, therefore, important for Ca(2+) handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP(3))-induced Ca(2+) release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca(2+) signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.


Assuntos
Canais de Cloreto/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Anoctamina-1 , Bestrofinas , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular , Canais de Cloreto/genética , Retículo Endoplasmático/ultraestrutura , Proteínas do Olho/genética , Humanos , Canais Iônicos , Degeneração Macular/metabolismo , Camundongos , Camundongos Knockout , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Interferência de RNA , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2 , Xenopus laevis , Quinases Ativadas por p21/metabolismo
15.
J Biol Chem ; 284(42): 28571-8, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19654323

RESUMO

All vertebrate cells regulate their cell volume by activating chloride channels of unknown molecular identity, thereby activating regulatory volume decrease. We show that the Ca(2+)-activated Cl(-) channel TMEM16A together with other TMEM16 proteins are activated by cell swelling through an autocrine mechanism that involves ATP release and binding to purinergic P2Y(2) receptors. TMEM16A channels are activated by ATP through an increase in intracellular Ca(2+) and a Ca(2+)-independent mechanism engaging extracellular-regulated protein kinases (ERK1/2). The ability of epithelial cells to activate a Cl(-) conductance upon cell swelling, and to decrease their cell volume (regulatory volume decrease) was dependent on TMEM16 proteins. Activation of I(Cl,swell) was reduced in the colonic epithelium and in salivary acinar cells from mice lacking expression of TMEM16A. Thus TMEM16 proteins appear to be a crucial component of epithelial volume-regulated Cl(-) channels and may also have a function during proliferation and apoptotic cell death.


Assuntos
Canais de Cloreto/genética , Canais de Cloreto/fisiologia , Cloretos/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Animais , Anoctamina-1 , Apoptose , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Separação Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína
16.
Pflugers Arch ; 458(4): 713-21, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19333618

RESUMO

The metabolic sensor adenosine-monophosphate-activated kinase (AMPK) detects the cellular energy status and adjusts metabolic activity according to the cytosolic AMP to ATP ratio. Na(+) absorption by epithelial Na(+) channels (ENaC) is a highly energy-consuming process that is inhibited by AMPK. We show that the catalytic subunit alpha1 of AMPK inhibits ENaC in epithelial tissues from airways, kidney, and colon and that AMPK regulation of ENaC is absent in AMPKalpha1-/- mice. These mice demonstrate enhanced electrogenic Na(+) absorption that leads to subtle changes in intestinal and renal function and may also affect Na(+) absorption and mucociliary clearance in the airways. We demonstrate that AMPK uses the ubiquitin ligase Nedd4-2 to inhibit ENaC by increasing ubiquitination and endocytosis of ENaC. Thus, enhanced expression of epithelial Na(+) channels was detected in colon, airways, and kidney of AMPKalpha1-/- mice. Therefore, AMPKalpha1 is a physiologically important regulator of electrogenic Na(+) absorption and may provide a novel pharmacological target for controlling epithelial Na(+) transport.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte , Camundongos , Camundongos Knockout , Mutação , Ubiquitina-Proteína Ligases Nedd4
17.
Pflugers Arch ; 457(5): 1071-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18752001

RESUMO

Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Cloretos/metabolismo , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Epitélio/metabolismo , Camundongos , Camundongos Knockout , Fenformin/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia
18.
J Biol Chem ; 283(19): 13225-32, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18308722

RESUMO

CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.


Assuntos
Caseína Quinase II/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Membrana Celular/metabolismo , Eletrofisiologia , Ativação Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Canais Epiteliais de Sódio/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos , Técnicas de Patch-Clamp , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Ratos , Sódio/química , Sódio/metabolismo , Especificidade por Substrato , Triazóis/farmacologia , Xenopus laevis
19.
Cell Physiol Biochem ; 18(4-5): 243-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17167229

RESUMO

DIDS (4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid) is a commonly used blocker of plasma membrane anion channels and transporters. We observed that DIDS undergoes decomposition while stored in DMSO (dimethyl sulfoxide) forming a biologically active compound. One decomposition product, called IADS, was identified and synthesized. Voltage-clamp and patch clamp experiments on Xenopus laevis oocytes and human erythrocytes revealed that IADS is able to activate a plasma membrane cation conductance in both cell types. Furthermore, we found that IADS induces hemolysis in red blood cells of healthy donors but fails to hemolyze erythrocytes of donors with cystic fibrosis. Thus, IADS stimulated activation of a cation conductance could form the basis for a novel diagnostic test of cystic fibrosis.


Assuntos
Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/análogos & derivados , Fibrose Cística/diagnóstico , Eritrócitos/efeitos dos fármacos , Hemólise , Oócitos/efeitos dos fármacos , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/síntese química , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/química , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Cátions/metabolismo , Eletrofisiologia , Eritrócitos/fisiologia , Feminino , Humanos , Transporte de Íons/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA