Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891276

RESUMO

Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.

3.
J Photochem Photobiol B ; 204: 111786, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982671

RESUMO

Biological synthesis of nanoparticles is a growing research trend because it has numerous applications in pharmaceutics and biomedicine. The aim of this study was to obtain silver nanoparticles (AgNPs) from Bacillus sp. KFU36, a marine strain, and to assess its anticancer activity. The supernatant of Bacillus sp. KFU36 was supplemented with silver nitrate and the nanoparticles obtained were characterized spectrophotometrically and microscopically. A band of surface plasmon resonance was appeared at 430 nm, as revealed by UV-vis spectrophotometry. X-ray diffraction spectrum and Energy Dispersive Spectroscopy confirmed the crystalline and metallic structure of the AgNPs, respectively. Scanning electron microscopy revealed that the shape of the synthesized AgNPs were spherical and the size extended between 5 and 15 nm. The AgNPs were investigated for their potential anticancer effects on the cell viability, migration and apoptosis using MTT and wound-healing assays, and flow cytometry, respectively. The cytotoxic effects of these nanoparticles were evidenced by the decreasing the cell viability (as 15% at 50 µg/ml), cell density, adhesion capacity and losing the normal shape and size, and inducing the apoptosis on MCF-7 by 61% at 50 µg/ml. These findings confirm that the synthesized AgNPs exhibited superior anticancer activities and therefore could be exploited as a promising, cost-effective, and environmentally benign strategy in treating this disease in future.


Assuntos
Bacillus/química , Nanopartículas Metálicas/química , Prata/química , Apoptose/efeitos dos fármacos , Bacillus/classificação , Bacillus/genética , Neoplasias da Mama , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Química Verde , Humanos , Células MCF-7 , Nanopartículas Metálicas/toxicidade , Filogenia
4.
Saudi J Biol Sci ; 26(1): 148-154, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622419

RESUMO

BACKGROUND: Synthesis of silver nanoparticles (AgNPs) through biological route plays an important role in their applications in the medical field, especially in the prevention of disease causing microbial pathogens and arresting the propagation of cancer cells. The stable, green synthesis of AgNPs is very much welcomed in the medical field because of their low toxicity. Therefore, the demands of AgNPs synthesised biologically is on the rise. The present study aimed to investigate the antimicrobial mechanisms and anticancer properties of the AgNPs synthesized using the seed extract of Trigonella foenum-graecum L. The AgNPs were characterized by UV-vis, SEM, XRD, FTIR and EDAX analysis. The minimum inhibitory concentrations (MIC) of the AgNPs were determined by the broth micro dilution method. RESULTS: The formation of brownish red color indicated the formation NPs with the absorption maximum at 420 nm. The average size was found to be 33.93 nm and sphere shaped. The FTIR spectrum revealed the absorption bands at 3340 cm-1 and 1635 cm-1 indicated the presence of -OH or -COOH and amide group stretching in the AgNPs. The X-ray diffraction report confirmed the presence of strong peak values of 2θ within the angle of 37.1°. The lowest MIC of the AgNPs against Staphylococcus aureus was 62.5 µg mL-1. MIC values against Escherichia coli and Klebsiella pneumonia, were 125 and 250 µg mL-1 respectively. The MIC of the AgNPs against Aspergillus flavus, Trichophyton rubrum and Trichoderma viridiae were each 250 µg mL-1, respectively. The extracellular protein concentration, levels of lactate dehydrogenase and alkaline phosphtase enzyme in the AgNPs treated bacterial pathogens demonstrated greater antimicrobial mechanism. Additionally, the AgNPs exhibited significant anticancer activity against the MCF7 and Vero cell lines. CONCLUSION: The synthesized AgNPs could be further evaluated in large scale as a botanical antimicrobial agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA