Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 4: 100106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228329

RESUMO

Datura metel L., a recognized poisonous plant in the Solanaceae family, is widely distributed in the world. Traditionally, D. metel is used in many diseases, including neurological and heart diseases; fever; catarrh; pain; diarrhea; skin diseases; chronic bronchitis; asthma; digestive disorders; and so on. It possesses many important phytochemicals that can be used to treat various types of diseases. This review aims at summarizing the traditional uses, phytochemical, biological, and toxicological profiles of D. metel based on the database reports. For this, an up-to-date (till March 20, 2023) search was made in the databases: PubMed, Google Scholar, Science Direct, Scopus, and MedLine, with relevant keywords for the published evidence. Findings suggest that the plant has many traditional uses, such as a cure for madness, epilepsy, psoriasis, heart diseases, diarrhea, mad dog bites, indigestion, etc. It possesses various important phytochemicals, including withanolides, daturaolone, datumetine, daturglycosides, ophiobolin A, baimantuoluoline A, and many others. D. metel has many important biological activities, including antioxidant, anti-inflammatory, anti-microbial, insecticidal, anti-cancer, anti-diabetic, analgesic, anti-pyretic, neurological, contraceptive, and wound healing capacity. In conclusion, the toxic plant, D. metel, can be considered a potential source of phyto-therapeutic lead compounds.

2.
PLoS One ; 17(3): e0265649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35303021

RESUMO

The present study evaluated the cytotoxicity, antioxidant potential, and antimicrobial effect on the antibiotic activity modulation of gelatin nanoparticles containing buriti oil (OPG). The cytotoxicity analysis was performed on Chinese Hamster Ovary Cells (CHO) using a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] test. The antioxidant potential of buriti oil and OPG was determined by total antioxidant capacity, reducing power, and the ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) test. The modulating antimicrobial activity was evaluated by determining the minimum inhibitory concentration (MIC) concentration against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, gentamicin and norflaxacillin. The nanoformulation of OPG did not show a cytotoxic effect on CHO cells and had a higher antioxidant potential than free buriti oil (p<0.05). The combination of antibiotics with free buriti oil and OPG was more efficient in inhibiting E. coli and P. aeruginosa than isolated norfloxacillin and gentamicin (p<0.05). Regarding the inhibition of S. aureus, OPG in combination with norfloxacillin reduced MIC by 50%. Nanoencapsulation was a viable alternative to enhance functionality and adding commercial value to buriti oil.


Assuntos
Antioxidantes , Arecaceae , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Células CHO , Carotenoides , Cricetinae , Cricetulus , Escherichia coli , Gelatina , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Óleos de Plantas , Staphylococcus aureus , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA