Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 95: 42-51, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454878

RESUMO

Cell-cell interactions instruct cell fate and function. These interactions are hijacked to promote cancer development. Single-cell transcriptomics and spatial transcriptomics have become powerful new tools for researchers to profile the transcriptional landscape of cancer at unparalleled genetic depth. In this review, we discuss the rapidly growing array of computational tools to infer cell-cell interactions from non-spatial single-cell RNA-sequencing and the limited but growing number of methods for spatial transcriptomics data. Downstream analyses of these computational tools and applications to cancer studies are highlighted. We finish by suggesting several directions for further extensions that anticipate the increasing availability of multi-omics cancer data.


Assuntos
Neoplasias , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Neoplasias/genética , Comunicação Celular/genética , Diferenciação Celular , Análise de Célula Única
2.
BMC Bioinformatics ; 21(1): 95, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126976

RESUMO

BACKGROUND: Many cancers arise from mutations in cells within epithelial tissues. Mutations manifesting at the subcellular level influence the structure and function of the tissue resulting in cancer. Previous work has proposed how cell level properties can lead to mutant cell invasion, but has not incorporated detailed subcellular modelling RESULTS: We present a framework that allows the straightforward integration and simulation of SBML representations of subcellular dynamics within multiscale models of epithelial tissues. This allows us to investigate the effect of mutations in subcellular pathways on the migration of cells within the colorectal crypt. Using multiple models we find that mutations in APC, a key component in the Wnt signalling pathway, can bias neutral drift and can also cause downward invasion of mutant cells in the crypt. CONCLUSIONS: Our framework allows us to investigate how subcellular mutations, i.e. knockouts and knockdowns, affect cell-level properties and the resultant migration of cells within epithelial tissues. In the context of the colorectal crypt, we see that mutations in APC can lead directly to mutant cell invasion.


Assuntos
Neoplasias Colorretais/metabolismo , Modelos Biológicos , Adesão Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Bases de Dados Factuais , Humanos , Mutação , Via de Sinalização Wnt
3.
J R Soc Interface ; 15(145)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068555

RESUMO

The intestinal epithelium is a single layer of cells which provides the first line of defence of the intestinal mucosa to bacterial infection. Cohesion of this physical barrier is supported by renewal of epithelial stem cells, residing in invaginations called crypts, and by crypt cell migration onto protrusions called villi; dysregulation of such mechanisms may render the gut susceptible to chronic inflammation. The impact that excessive or misplaced epithelial cell death may have on villus cell migration is currently unknown. We integrated cell-tracking methods with computational models to determine how epithelial homeostasis is affected by acute and chronic TNFα-driven epithelial cell death. Parameter inference reveals that acute inflammatory cell death has a transient effect on epithelial cell dynamics, whereas cell death caused by chronic elevated TNFα causes a delay in the accumulation of labelled cells onto the villus compared to the control. Such a delay may be reproduced by using a cell-based model to simulate the dynamics of each cell in a crypt-villus geometry, showing that a prolonged increase in cell death slows the migration of cells from the crypt to the villus. This investigation highlights which injuries (acute or chronic) may be regenerated and which cause disruption of healthy epithelial homeostasis.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Duodeno/metabolismo , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Animais , Caspase 3/metabolismo , Duodeno/patologia , Íleo/patologia , Mucosa Intestinal/patologia , Camundongos
4.
Bull Math Biol ; 80(2): 335-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29234982

RESUMO

Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work.


Assuntos
Mucosa Intestinal/anatomia & histologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Morte Celular , Proliferação de Células , Tamanho Celular , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Simulação por Computador , Homeostase , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Conceitos Matemáticos , Modelos Anatômicos
5.
PLoS Biol ; 14(6): e1002491, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27348469

RESUMO

The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission.


Assuntos
Mucosa Intestinal/citologia , Celulas de Paneth/citologia , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco , Células-Tronco/citologia , Fatores Etários , Animais , Adesão Celular , Contagem de Células , Divisão Celular , Proliferação de Células , Integrina beta4/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Modelos Biológicos , Organoides/citologia , Organoides/metabolismo , Celulas de Paneth/metabolismo , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA