Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
2.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544980

RESUMO

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

3.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050006

RESUMO

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Assuntos
Antioxidantes , Fabaceae , Ratos , Animais , Antioxidantes/química , Antocianinas/farmacologia , Antocianinas/análise , Edulcorantes , Extratos Vegetais/química , Polissacarídeos/química , Carboidratos/análise , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Fabaceae/química , Bebidas/análise
4.
Microorganisms ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985234

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKp) is a new emerging variant of K. pneumoniae that is increasingly reported worldwide. The variant hvKp is known to cause severe invasive community-acquired infections such as metastatic meningitis, pyogenic liver abscesses (PLA) and endophthalmitis, but its role in hospital-acquired infections (HAIs) is little known. The aim of this study was to evaluate the prevalence of hvKp among hospital-acquired (HA) K. pneumoniae infections in the intensive care unit (ICU) and to compare between hvKp and classical K. pneumoniae (cKP) regarding antimicrobial resistance pattern, virulence and molecular characteristics. The study was cross-sectional and included 120 ICU patients suffering from HA K. pneumoniae infections between January and September 2022. K. pneumoniae isolates were subjected to antimicrobial susceptibility testing and detection of extended-spectrum-ß-lactamase (ESBL) production by the Phoenix 100 automated microbiology system, string test, biofilm formation, serum resistance assay, and detection of virulence-associated genes (rmpA, rmpA2, magA, iucA) and capsular serotype-specific genes (K1, K2, K5, K20, K57) by polymerase chain reaction (PCR). Of 120 K. pneumoniae isolates, 19 (15.8%) were hvKp. The hypermucoviscous phenotype was more significantly detected in the hvKp group than in the cKP group (100% vs. 7.9%, p ≤ 0.001). The rate of resistance to different antimicrobial agents was significantly higher in the cKP group than that in the hvKp group. Fifty-three strains were identified as ESBL-producing strains, which was more frequent in the cKP group than in the hvKp group (48/101 [47.5%] vs. 5/19 [26.3%], respectively, p ≤ 0.001). The hvKP isolates were highly associated with moderate and strong biofilm formation than cKP isolates (p = 0.018 and p = 0.043 respectively). Moreover, the hvKP isolates were highly associated with intermediate sensitivity and re sistance to serum in the serum resistance assay (p = 0.043 and p = 0.016 respectively). K1, K2, rmpA, rmpA2, magA and iucA genes were significantly associated with hvKp (p ≤ 0.001, 0.004, <0.001, <0.001, 0.037 and <0.001, respectively). However, K5, K20 and K57 were not associated with hvKp. The hvKp strains have emerged as a new threat to ICU patients because of their ability to cause more severe and life-threatening infections than cKP. The string test alone as a laboratory test for screening of hvKp has become insufficient. Recently, hvKp was defined as hypermucoviscous- and aerobactin-positive. It is important to improve the awareness towards the diagnosis and management of hvKp infections.

5.
Front Nutr ; 9: 1008349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424930

RESUMO

Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.

6.
Front Nutr ; 9: 999581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225874

RESUMO

Industrial pomaces are cheap sources of phenolic compounds and fibers but dumping them in landfills has negative environmental and health consequences. Therefore, valorizing these wastes in the food industry as additives significantly enhances the final product. In this study, the citrus pomaces, orange pomace (OP), mandarin pomace (MP), and lemon pomace (LP) were collected by a juice company and subjected to producing polyphenols and fiber-enriched fractions, which are included in functional yogurt; the pomace powder with different levels (1, 3, and 5%) was homogenized in cooled pasteurized milk with other ingredients (sugar and starter) before processing the yogurt fermentation. The HPLC phenolic profile showed higher phenolic content in OP extract, i.e., gallic acid (1,702.65), chlorogenic acid (1,256.22), naringenin (6,450.57), catechin (1,680.65), and propyl gallate (1,120.37) ppm with massive increases over MP (1.34-37 times) and LP (1.49-5 times). The OP extract successfully scavenged 87% of DPPH with a relative increase of about 16 and 32% over LP and MP, respectively. Additionally, it inhibits 77-90% of microbial growth at 5-8 µg/mL while killing them in the 9-14 µg/mL range. Furthermore, OP extract successfully reduced 77% of human breast carcinoma. Each of pomace powder sample (OP, MP, LP) was added to yogurt at three levels; 1, 3, and 5%, while the physiochemical, sensorial, and microbial changes were monitored during 21 days of cold storage. OP yogurt had the highest pH and lowest acidity, while LP yogurt recorded the reverse. High fat and total soluble solids (TSS) content are observed in OP yogurt because of the high fiber content in OP. The pH values of all yogurt samples decreased, while acidity, fat, and TSS increased at the end of the storage period. The OP yogurts 1 and 3% scored higher in color, flavor, and structure than other samples. By measuring the microbial load of yogurt samples, the OP (1 and 3%) contributes to the growth of probiotics (Lactobacillus spp) in yogurt samples and reduces harmful microbes. Using citrus pomace as a source of polyphenols and fiber in functional foods is recommended to enhance their physiochemical and sensory quality.

7.
Front Microbiol ; 13: 922324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267179

RESUMO

Cancer and bacterial infection are the most serious problems threatening people's lives worldwide. However, the overuse of antibiotics as antibacterial and anticancer treatments can cause side effects and lead to drug-resistant bacteria. Therefore, developing natural materials with excellent antibacterial and anticancer activity is of great importance. In this study, different concentrations of chitosan (CS), graphene oxide (GO), and graphene oxide-chitosan composite (GO-CS) were tested to inhibit the bacterial growth of gram-positive (Bacillus cereus MG257494.1) and gram-negative (Pseudomonas aeruginosa PAO1). Moreover, we used the most efficient natural antibacterial material as an anticancer treatment. The zeta potential is a vital factor for antibacterial and anticancer mechanism, at pH 3-7, the zeta potential of chitosan was positive while at pH 7-12 were negative, however, the zeta potential for GO was negative at all pH values, which (p < 0.05) increased in the GO-CS composite. Chitosan concentrations (0.2 and 1.5%) exhibited antibacterial activity against BC with inhibition zone diameters of 4 and 12 mm, respectively, and against PAO1 with 2 and 10 mm, respectively. Treating BC and PAO1 with GO:CS (1:2) and GO:CS (1:1) gave a larger (p < 0.05) inhibition zone diameter. The viability and proliferation of HeLa cells treated with chitosan were significantly decreased (p < 0.05) from 95.3% at 0% to 12.93%, 10.33%, and 5.93% at 0.2%, 0.4%, and 0.60% concentrations of chitosan, respectively. Furthermore, CS treatment increased the activity of the P53 protein, which serves as a tumor suppressor. This study suggests that chitosan is effective as an antibacterial and may be useful for cancer treatment.

8.
Molecules ; 27(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080247

RESUMO

Combretaceae, an immense family involving species (500) or genera (20), originates in tropical and subtropical regions. This family has evinced medicinal values such as anti-leishmanial, cytotoxic, antibacterial, antidiabetic, antiprotozoal, and antifungal properties. Conocarpus lancifolius (C. lancifolius) methanol extract (CLM) was prepared, then compound isolation performed by open column chromatography, and compound structure was determined by spectroscopic techniques (13C NMR, IR spectroscopy, 1H-NMR, mass spectrometry UV-visible, and 2D correlation techniques). Molecular docking studies of ligand were performed on transcriptional regulators 4EY7 and 2GV9 to observe possible interactions. Phytochemical screening revealed the presence of secondary metabolites including steroids, cardiac glycosides, saponins, anthraquinones, and flavonoids. The isolated compound was distinguished as lancifolamide (LFD). It showed cytotoxic activity against human breast cancer, murine lymphocytic leukemia, and normal cells, human embryonic kidney cells, and rat glioma cells with IC50 values of 0.72 µg/mL, 2.01 µg/mL, 1.55 µg/mL, and 2.40 µg/mL, respectively. Although no cytotoxic activity was noticed against human colon cancer and human lung cancer, LFD showed 24.04% inhibition against BChE and 60.30% inhibition against AChE and is therefore beneficial for Alzheimer's disease (AD). AChE and LFD interact mechanistically in a way that is optimum for neurodegenerative disorders, according to molecular docking studies. Methanol and dichloromethane extract of C. lancifolius and LFD shows antibacterial and antifungal activity against antibiotic resistance Bacillus subtilis, Streptococcus mutans, Brevibacillus laterosporus, Salmonella Typhi, Candida albicans, and Cryptococcus neoformans, respectively. LFD shows antiviral activity against HSV-1 with 26% inhibition IP. The outcomes of this study support the use of LFD for cognitive disorders and highlight its underlying mechanism, targeting AChE, DNA-POL, NF-KB, and TNF-α, etc., for the first time.


Assuntos
Inibidores da Colinesterase , Combretaceae , Herpes Simples , Herpesvirus Humano 1 , Acetilcolinesterase/metabolismo , Animais , Inibidores da Colinesterase/química , Combretaceae/química , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Metanol , Camundongos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Ratos
9.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956775

RESUMO

Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 µg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 µg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.


Assuntos
Anti-Infecciosos , Mentha pulegium , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/química , Hemólise , Hemolíticos , Quempferóis , Luteolina , Mentha pulegium/química , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
10.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35624793

RESUMO

Foodborne infections and antibiotic resistance pose a serious threat to public health and must be addressed urgently. Pistacia lentiscus is a wild-growing shrub and has been utilized for medicinal applications as well as for culinary purposes. The antibacterial and antioxidant activities of P. lentiscus bark in vitro, as well as the phytochemical composition, are the focus of this inquiry. The bark extract of P. lentiscus showed significant antimicrobial activity in experiments on bacteria and yeast isolated from human and food sources. The exposure time for the complete inhibition of cell viability of P. aeruginosa in the extracts was found to be 5% at 15 min. Phytochemical inquiry of the methanol extract demonstrates the existence of carbohydrates, flavonoids, tannins, coumarins, triterpenes, and alkaloids. Deep phytochemical exploration led to the identification of methyl gallate, gallic acid, kaempferol, quercetin, kaempferol 3-O-α-rhamnoside, kaempferol 3-O-ß-glucoside, and Quercetin-3-O-ß-glucoside. When tested using the DPPH assay, the methanol extracts of P. lentiscus bark demonstrated a high free radical scavenging efficiency. Further, we have performed a molecular modelling study which revealed that the extract of P. lentiscus bark could be a beneficial source for novel flavonoid glycosides inhibitors against SARS-CoV-2 infection. Taken together, this study highlights the Pistacia lentiscus bark methanol extract as a promising antimicrobial and antiviral agent.

11.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453243

RESUMO

Raw milk is a significant vehicle for the transmission of different infections. In the present study, we focused on Salmonella enterica from raw milk and its resistance to various antibacterial drugs. Furthermore, we have investigated the antimicrobial and antibiofilm effects of essential oil (EO) obtained from Salvia officinalis L. leaves that were collected from the Aljouf region, Saudi Arabia, against S. enterica. One-dozen strains of S. enterica were found in a batch of a hundred milk samples, and those S. enterica strains were shown to be resistant to several antibiotics, particularly the ß-lactam group of antimicrobial drugs. Against multidrug-resistant S. enterica, the inhibitory zones for EO from S. officinalis leaves were found to be 21 mm in diameter. S. officinalis EO at 5% concentration showed a remarkable in vitro inhibitory activity toward the biofilm growth of different S. enterica isolates. Analysis of EO by GC-MS identified 21 distinct components, accounting for 89.94% of the total oil component. The most prominent compounds were 1,8-cineole (39.18%), ß-caryophyllene (12.8%), and α--terpineol (10.3%). Taken together, our results unequivocally confirm that the S. officinalis EOs exert numerous bioactivities. Thus, the well-deserved attention on S. officinalis EO usage as a food preservative and adjunctive remedy for bacterial food-borne diseases is justified.

12.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268707

RESUMO

Cisplatin (CISP) is one of the most widely used anti-cancer chemotherapeutic agents with remarkable efficacy against various types of cancers. However, it has been associated with nephrotoxicity amongst other undesirable side effects. Pomegranate (PE) is a potent antioxidant and anti-inflammatory agent effective against cancer, with a superior benefit of not being associated with the common toxicities related to the use of conventional chemotherapeutic agents. However, the application of PE is limited by its reduced solubility and decreased bioavailability. We investigated the potential of a novel nanoparticle (NP) enclosing PE to enhance its solubility and improve its bioavailability, and efficacy to prevent CISP-associated nephrotoxicity in a mice model of Ehrlich solid carcinoma (ESC). All mice were grouped into four cohorts: (I) control, (II) tumor, (III) CISP, and (IV) CISP + PE-NPs. The data obtained demonstrated that PE-NPs was beneficial in potently ameliorating CISP-induced nephrotoxicity in ESC mice. PE-NPs significantly attenuated CISP-induced oxidative stress and lipid peroxidation in the kidney via improving activities of antioxidants (SOD, GSH, and CAT). Additionally, PE-NPs considerably decreased CISP-induced inflammation in the kidney by decreasing the levels of NF-kB, IL-1ß, and TNF-α. Notably, PE-NPs did not assuage the antitumor efficacy of CISP as revealed by histological assessment and tumor weight data. In summary, PE-NPs may be a potent alternative anticancer therapy devoid of nephrotoxicity.


Assuntos
Antineoplásicos , Carcinoma , Nanopartículas , Punica granatum , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Carcinoma/patologia , Cisplatino/farmacologia , Rim , Camundongos , Estresse Oxidativo
13.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208207

RESUMO

A strain of Bacillus cereus was isolated from the Saudi Red Sea coast and identified based on culture features, biochemical characteristics, and phylogenetic analysis of 16S rRNA sequences. EPSR3 was a major fraction of exopolysaccharides (EPS) containing no sulfate and had uronic acid (28.7%). The monosaccharide composition of these fractions is composed of glucose, galacturonic acid, and arabinose with a molar ratio of 2.0: 0.8: 1.0, respectively. EPSR3 was subjected to antioxidant, antitumor, and anti-inflammatory activities. The results revealed that the whole antioxidant activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH radical found about 500 µg/mL after 60 min. While using H2O2, the scavenging activity was 75.1 ± 1.9% at 1500 µg/mL after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min. EPSR3 anticytotoxic effect on the proliferation of (Bladder carcinoma cell line) (T-24), (human breast carcinoma cell line) (MCF-7), and (human prostate carcinoma cell line) (PC-3) cells. The calculated IC50 for cell line T-24 was 121 ± 4.1 µg/mL, while the IC50 for cell line MCF-7 was 55.7 ± 2.3 µg/mL, and PC-3 was 61.4 ± 2.6 µg/mL. Anti-inflammatory activity was determined for EPSR3 using different methods as Lipoxygenase (LOX) inhibitory assay gave IC50 12.9 ± 1.3 µg/mL. While cyclooxygenase (COX-2) inhibitory test showed 29.6 ± 0.89 µg /mL. EPSR3 showed potent inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. The exposure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant S. aureus was found to be 5% at 60 min. Membrane stabilization inhibitory gave 35.4 ± 0.67 µg/mL. EPSR3 has antitumor activity with a reasonable margin of safety. The antitumor activity of EPSR3 may be attributed to its content from uronic acids with potential for cellular antioxidant and anticancer functional properties.

14.
Sci Rep ; 11(1): 13659, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211018

RESUMO

In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 â—‹C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm-1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.


Assuntos
Proteínas de Bactérias/metabolismo , Biocombustíveis , Lipase/metabolismo , Metanol/metabolismo , Micrococcaceae/enzimologia , Óleos de Plantas/metabolismo , Biocatálise , Biocombustíveis/análise , Biocombustíveis/microbiologia , Biotecnologia/métodos , Culinária , Gorduras Insaturadas na Dieta/metabolismo , Micrococcaceae/metabolismo
15.
J Agric Food Chem ; 69(22): 6240-6250, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033484

RESUMO

Brassica sprouts are known as a good source of antimicrobial bioactive compounds such as phenolics and glucosinolates (GLs). We aim at understanding how He-Ne laser light treatment (632 nm, 5 mW) improves sprout growth and physiology and stimulates the accumulation of bioactive metabolites in three Brassica spp., i.e., mustard, cauliflower, and turnip. Moreover, how these changes consequently promote their biological activities. Laser light improved growth, photosynthesis, and respiration, which induced the accumulation of primary and secondary metabolites. Laser light boosted the levels of pigments, phenolics, and indole and aromatic precursors of GLs, which resulted in increased total GLs and glucoraphanin contents. Moreover, laser light induced the myrosinase activity to provoke GLs hydrolysis to bioactive sulforaphane. Interestingly, laser light also reduced the anti-nutrient content and enhanced the overall biological activities of treated sprouts including antioxidant, antibacterial, anti-inflammatory, and anticancer activities. Accordingly, laser light is a promising approach for boosting the accumulation of beneficial metabolites in Brassica sprouts and, subsequently, their biological activities.


Assuntos
Brassica , Antioxidantes , Glucosinolatos , Isotiocianatos , Lasers , Compostos Fitoquímicos
16.
Food Chem ; 357: 129730, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33989926

RESUMO

Sprouts have been regarded as a big store for bioactive compounds with a wide range of biological activities. Elevated CO2 (eCO2, 620 µmol mol-1)was employed to enhance the nutritive and health promoting values of sprouts of two species of lemongrass, i.e. Cymbopogon citratus and Cymbopogon proximus. eCO2 improved the biomass production of sprouts, and their levels of primary metabolites e.g., amino acids and oils and active secondary metabolites e.g., phenolic compounds. As a result, eCO2 increased total antioxidant capacity, cytotoxicity against several human cancer cell lines, and antibacterial activities of Cymbopogon sprouts. We also recorded a significant increase in hypocholesterolaemic potential and anti-inflammatory activities of eCO2-treated sprouts, as indicated by inhibition of cholesterol micellar solubility and pancreatic lipase activity, as well as lipoxygenase and cyclooxygenase activities, respectively. Thus, the present investigation supports the use of eCO2 as a promising approach to produce lemongrass sprouts with effective phytochemicals and enhanced biological activities.

17.
Biology (Basel) ; 10(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808594

RESUMO

Biomolecules from natural sources, including microbes, have been the basis of treatment of human diseases since the ancient times. Therefore, this study aimed to investigate the potential bioactivity of several actinobacteria isolates form Al-Jouf Desert, Saudi Arabia. Twenty-one actinobacterial isolates were tested for their antioxidant (flavonoids, phenolics, tocopherols and carotenoids) content, and biological activities, namely FRAP, DPPH, ABTS, SOS and XO inhibition, anti-hemolytic and anti-lipid peroxidation as well as their antibacterial and antiprotozoal activities. Accordingly, five isolates (i.e., Act 2, 12, 15, 19 and 21) were selected and their 90% ethanolic extracts were used. The phylogenetic analysis of the 16S rRNA sequences indicated that the most active isolates belong to genus Streptomyces. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites against different cancer types. Thus, the anti-blood cancer activity and the possible molecular mechanisms by which several Streptomyces species extracts inhibited the growth of different leukemia cells, i.e., HL-60, K562 and THP-1, were investigated. In general, the five active isolates showed cytotoxic activity against the tested cell lines in a dose dependent manner. Among the potent isolates, isolate Act 12 significantly decreased the cell viability and showed maximum cytotoxic activities against both HL-60 and K562 cells, while isolate Act 15 exhibited maximum cytotoxic activity against THP-1 cells. Moreover, Act 2 and Act 12 reduced cyclooxygenase (COX-2) and lipoxygenase (LOX) activity, which is involved in the proliferation and differentiation of cancer cells and may represent a possible molecular mechanism underlying leukemia growth inhibition. The bioactive antioxidant extracts of the selected Streptomyces species inhibited leukemia cell growth by reducing the COX-2 and LOX activity. Overall, our study not only introduced a promising natural alternative source for anticancer agents, but it also sheds light on the mechanism underlying the anticancer activity of isolated actinomycetes.

18.
Food Chem ; 345: 128788, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33340896

RESUMO

Buckwheat sprouts are rich in several nutrients such as antioxidant flavonoids that have a positive impact on human health. Although there are several studies reported the positive impact of laser light on crop plants, no studies have applied laser light to enhance the nutritive values of buckwheat sprouts. Herein, the contents of health-promoting minerals, metabolites and enzymes as well as the antioxidant and anti-inflammatory activities were determined in laser-treated (He-Ne laser, 632 nm, 5 mW) common buckwheat (CBW) and tartarybuckwheat (TBW) sprouts. Out of 49 targeted minerals, vitamins, pigments and antioxidants, more than 35 parameters were significantly increased in CBW and/or TBW sprouts by laser light treatment. Also, laser light boosted the antioxidant capacity and anti-inflammatory activities through inhibiting cyclooxygenase-2 and lipoxygenase activities, particularly in TBW sprouts. Accordingly, laser light could be recommended as a promising method to improve the nutritional and health-promoting values of buckwheat sprouts.


Assuntos
Anti-Inflamatórios/análise , Antioxidantes/análise , Fagopyrum/química , Flavonoides/análise , Lasers , Valor Nutritivo/efeitos da radiação , Humanos , Oxirredução/efeitos da radiação
19.
Food Chem ; 328: 127102, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32512468

RESUMO

Sprouting process enhances plant bioactive compounds. Broccoli (Brassica oleracea L) sprouts are well known for their high levels of glucosinolates (GLs), amino acids, and antioxidants, which offer outstanding biological activities with positive impacts on plant metabolism. Elevated CO2 (eCO2, 620 ppm) was applied for 9 days to further improve nutritive and health-promoting values of three cultivars of broccoli sprouts i.e., Southern star, Prominence and Monotop. eCO2 improved sprouts growth and induced GLs accumulation e.g., glucoraphanin, possibly through amino acids production e.g., high methionine and tryptophan. There were increases in myrosinase activity, which stimulated GLs hydrolysis to yield health-promoting sulforaphane. Interestingly, low levels of ineffective sulforaphane nitrile were detected and positively correlated with reduced epithiospecifier protein after eCO2 treatment. High glucoraphanin and sulforaphane levels in eCO2 treated sprouts improved the anticarcinogenic and anti-inflammatory properties of their extracts. In conclusion, eCO2 treatment enriches broccoli sprouts with health-promoting metabolites and bioactivities.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Brassica/metabolismo , Dióxido de Carbono/metabolismo , Glucosinolatos/metabolismo , Aminoácidos/metabolismo , Anti-Inflamatórios/farmacologia , Brassica/química , Brassica/crescimento & desenvolvimento , Linhagem Celular , Glucosinolatos/farmacologia , Humanos , Imidoésteres/metabolismo , Imidoésteres/farmacologia , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Oximas , Extratos Vegetais/farmacologia , Sulfóxidos
20.
Saudi J Biol Sci ; 27(7): 1710-1716, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565686

RESUMO

The oxidative stress leading to degenerative changes in the brain of Alzheimer's disease (AD) is evident. Our aim was to evaluate the therapeutic and protective effects of pomegranate extract (PE) and pomegranate extract-loaded nanoparticles (PE nano) in an AlCl 3-induced AD rat model. Nanoparticles were synthesized with a PE load of 0.68% w/w, and 70 male Wistar rats were divided into 7 groups: Group I was the control, Group II received PE., Group III received PE nano for 2 weeks, Group IV received AlCl 3 (50 mg/kg) daily orally for 4 weeks, Group V received PE for 2 weeks, Group VI received PE nano for 2 weeks, and Groups V and VI were started after AlCl 3 administration was stopped. Group VII received PE for 2 weeks and was stopped before AlCl 3 was administered. The Results revealed that the discrimination index in the novel object recognition test was the least in AD rat model but increased in cases protected with PE treated with PE nano. Similar results were shown based on calculating the brain weight/body weight percent. The biomarkers of antioxidant activity (catalase, glutathione and total antioxidant activity) in brain homogenate were significantly increased in groups treated with either PE or PE nano. The thiobarbituric acid reactive substance measured to estimate lipid peroxidation was significantly increased in AD rat model and decreased in groups protected with PE or treated with PE nano. Histopathological studies using hematoxylin and eosin, cresyl violet, and silver stains revealed hyaline degeneration, chromatolysis, and hallmarks of AD; neurofibrillary tangles and the senile plaques in brains of AD rat model. Restoration of the histological architecture, Nissl granules, and minimal appearance of hallmarks of AD characterized brains treated with PE or PE nano. In conclusion, PE was more effective as a protectant than a therapeutic measure in alleviating the antioxidant, lipid peroxidative effects and histopathological hallmarks in AD brains. But, the therapeutic PE-loaded nanoparticles increased the efficacy of active components and produced similar results as the protective PE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA