RESUMO
OBJECTIVE: Congenital hypogonadotropic hypogonadism (CHH) is a rare, genetically heterogeneous reproductive disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. Approximately half of CHH patients also have decreased or absent sense of smell, that is, Kallmann syndrome (KS). We describe a patient with White-Sutton syndrome (developmental delay and autism spectrum disorder) and KS due to a heterozygous de novo mutation in POGZ (c.2857C>T, p.(Gln953*)), a gene encoding pogo transposable element derived with zinc finger domain, which acts as a transcriptomic regulator of neuronal networks. DESIGN AND METHODS: We modeled the role of POGZ in CHH by generating 2 clonal human pluripotent stem cell lines with CRISPR/Cas9, carrying either the heterozygous patient mutation (H11 line) or a homozygous mutation (c.2803-2906del; p.E935Kfs*7 encoding a truncated POGZ protein; F6del line). RESULTS: During the differentiation to GnRH neurons, neural progenitors derived from F6del line displayed severe proliferation defect, delayed wound-healing capacity, downregulation of intermediate progenitor neuron genes TBR1 and TBR2, and immature neuron markers PAX6 and TUBB3 and gave rise to fewer neurons with shorter neurites and less neurite branch points compared to the WT and H11 lines (P < .005). Both lines, however, could be successfully differentiated to GnRH neurons. CONCLUSIONS: In conclusion, this is the first report on the overlap between White-Sutton syndrome and CHH. POGZ mutations do not hinder GnRH neuron formation but may cause CHH/KS by affecting the size and motility of the anterior neural progenitor pool and neurite outgrowth.
Assuntos
Transtorno do Espectro Autista , Síndrome de Kallmann , Humanos , Síndrome de Kallmann/genética , Neurônios , Hormônio Liberador de Gonadotropina , Mutação/genéticaRESUMO
Background: Childhood-onset combined pituitary hormone deficiency (CPHD) has a wide spectrum of etiologies and genetic causes for congenital disease. We aimed to describe the clinical spectrum and genetic etiologies of CPHD in a single tertiary center and estimate the population-level incidence of congenital CPHD. Methods: The retrospective clinical cohort comprised 124 CPHD patients (48 with congenital CPHD) treated at the Helsinki University Hospital (HUH) Children's Hospital between 1985 and 2018. Clinical data were collected from the patient charts. Whole exome sequencing was performed in 21 patients with congenital CPHD of unknown etiology. Findings: The majority (61%;76/124) of the patients had acquired CPHD, most frequently due to craniopharyngiomas and gliomas. The estimated incidence of congenital CPHD was 1/16 000 (95%CI, 1/11 000-1/24 000). The clinical presentation of congenital CPHD in infancy included prolonged/severe neonatal hypoglycaemia, prolonged jaundice, and/or micropenis/bilateral cryptorchidism in 23 (66%) patients; despite these clinical cues, only 76% of them were referred to endocrine investigations during the first year of life. The median delay between the first violation of the growth screening rules and the initiation of GH Rx treatment among all congenital CPHD patients was 2·2 years, interquartile range 1·2-3·7 years. Seven patients harbored pathogenic variants in PROP1, SOX3, TBC1D32, OTX2, and SOX2, and one patient carried a likely pathogenic variant in SHH (c.676G>A, p.(Ala226Thr)). Interpretation: Our study suggests that congenital CPHD can occur in 1/16 000 children, and that patients frequently exhibit neonatal cues of hypopituitarism and early height growth deflection. These results need to be corroborated in future studies and might inform clinical practice. Funding: Päivikki and Sakari Sohlberg Foundation, Biomedicum Helsinki Foundation, and Emil Aaltonen Foundation research grants.
RESUMO
Patients with deletions on chromosome 9q31.2 may exhibit delayed puberty, craniofacial phenotype including cleft lip/palate, and olfactory bulb hypoplasia. We report a patient with congenital HH with anosmia (Kallmann syndrome, KS) and a de novo 2.38 Mb heterozygous deletion in 9q31.2. The deletion breakpoints (determined with whole-genome linked-read sequencing) were in the FKTN gene (9:108,331,353) and in a non-coding area (9:110,707,332) (hg19). The deletion encompassed six protein-coding genes (FKTN, ZNF462, TAL2, TMEM38B, RAD23B, and KLF4). ZNF462 haploinsufficiency was consistent with the patient's Weiss-Kruszka syndrome (craniofacial phenotype, developmental delay, and sensorineural hearing loss), but did not explain his KS. In further analyses, he did not carry rare sequence variants in 32 known KS genes in whole-exome sequencing and displayed no aberrant splicing of 15 KS genes that were expressed in peripheral blood leukocyte transcriptome. The deletion was 1.8 Mb upstream of a KS candidate gene locus (PALM2AKAP2) but did not suppress its expression. In conclusion, this is the first report of a patient with Weiss-Kruszka syndrome and KS. We suggest that patients carrying a microdeletion in 9q31.2 should be evaluated for the presence of KS and KS-related features.
Assuntos
Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Perda Auditiva Neurossensorial/genética , Defeitos dos Septos Cardíacos/genética , Síndrome de Kallmann/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cromossomos Humanos Par 9/genética , Anormalidades Craniofaciais/complicações , Enzimas Reparadoras do DNA/genética , Deficiências do Desenvolvimento/complicações , Deleção de Genes , Haploinsuficiência , Perda Auditiva Neurossensorial/complicações , Defeitos dos Septos Cardíacos/complicações , Humanos , Canais Iônicos/genética , Síndrome de Kallmann/complicações , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Análise de Sequência de RNA , Síndrome , Sequenciamento do ExomaRESUMO
BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.
Assuntos
Cegueira Cortical , Forminas , Microcefalia , Doenças Mitocondriais , Convulsões , Imunodeficiência Combinada Severa , Adulto , Cegueira Cortical/genética , Cegueira Cortical/imunologia , Cegueira Cortical/patologia , Criança , Pré-Escolar , Feminino , Finlândia , Forminas/deficiência , Forminas/imunologia , Humanos , Masculino , Microcefalia/genética , Microcefalia/imunologia , Microcefalia/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Doenças Mitocondriais/patologia , Omã , Convulsões/genética , Convulsões/imunologia , Convulsões/patologia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , SíndromeRESUMO
Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.
Assuntos
Colite Ulcerativa/genética , Neoplasias Associadas a Colite/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteína 1 Homóloga a MutL/genética , Mutação , Proteína Supressora de Tumor p53/genética , Adulto , Colite Ulcerativa/complicações , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Análise de Sequência de DNARESUMO
The multiple pterygium syndromes (MPS) are rare disorders with disease severity ranging from lethal to milder forms. The nonlethal Escobar variant MPS (EVMPS) is characterized by multiple pterygia and arthrogryposis, as well as various additional features including congenital anomalies. The genetic etiology of EVMPS is heterogeneous and the diagnosis has been based either on the detection of pathogenic CHRNG variants (~23% of patients), or suggestive clinical features. We describe four patients with a clinical suspicion of EVMPS who manifested with multiple pterygia, mild flexion contractures of several joints, and vertebral anomalies. We revealed recessively inherited MYH3 variants as the underlying cause in all patients: two novel variants, c.1053C>G, p.(Tyr351Ter) and c.3102+5G>C, as compound heterozygous with the hypomorphic MYH3 variant c.-9+1G>A. Recessive MYH3 variants have been previously associated with spondylocarpotarsal synostosis syndrome. Our findings now highlight multiple pterygia as an important feature in patients with recessive MYH3 variants. Based on all patients with recessive MYH3 variants reported up to date, we consider that this disease entity should be designated as "Contractures, pterygia, and variable skeletal fusions syndrome 1B," as recently suggested by OMIM. Our findings underline the importance of analyzing MYH3 in the differential diagnosis of EVMPS, particularly as the hypomorphic MYH3 variant might remain undetected by routine exome sequencing.
Assuntos
Anormalidades Múltiplas/genética , Proteínas do Citoesqueleto/genética , Genes Recessivos , Variação Genética , Hipertermia Maligna/genética , Anormalidades da Pele/genética , Criança , Pré-Escolar , Contratura/genética , Feminino , Deleção de Genes , Heterozigoto , Humanos , Lordose/genética , Masculino , Mutação , Linhagem , Fenótipo , Escoliose/genética , Análise de Sequência de DNA , Irmãos , Sequenciamento do ExomaRESUMO
Some 10-50% of Lynch-suspected cases with abnormal immunohistochemical (IHC) staining remain without any identifiable germline mutation of DNA mismatch repair (MMR) genes. MMR proteins form heterodimeric complexes, giving rise to distinct IHC patterns when mutant. Potential reasons for not finding a germline mutation include involvement of an MMR gene not predicted by the IHC pattern, epigenetic mechanism of predisposition, primary mutation in another DNA repair or replication-associated gene, and double somatic MMR gene mutations. We addressed these possibilities by germline and tumor studies in 60 Lynch-suspected cases ascertained through diagnostics (n = 55) or research (n = 5). All cases had abnormal MMR protein staining in tumors but no point mutation or large rearrangement of the suspected MMR genes in the germline. In diagnostic practice, MSH2/MSH6 (MutS Homolog 2/MutS Homolog 6) deficiency prompts MSH2 mutation screening; in our study, 3/11 index individuals (27%) with this IHC pattern revealed pathogenic germline mutations in MSH6. Individuals with isolated absence of MSH6 are routinely screened for MSH6 mutations alone; we found a predisposing mutation in MSH2 in 1/7 such cases (14%). Somatic deletion of the MSH2-MSH6 region, joint loss of MSH6 and MSH3 (MutS Homolog 3) proteins, and hindered MSH2/MSH6 dimerization offered explanations to misleading IHC patterns. Constitutional epimutation hypothesis was pursued in the MSH2 and/or MSH6-deficient cases plus 38 cases with MLH1 (MutL Homolog 1)-deficient tumors; a primary MLH1 epimutation was identified in one case with an MLH1-deficient tumor. We conclude that both MSH2 and MSH6 should be screened in MSH2/6- and MSH6-deficient cases. In MLH1-deficient cases, constitutional epimutations of MLH1 warrant consideration.
RESUMO
Inherited DNA mismatch repair (MMR) defects cause predisposition to colorectal, endometrial, ovarian, and other cancers occurring in Lynch syndrome (LS). It is unsettled whether breast carcinoma belongs to the LS tumor spectrum. We approached this question through somatic mutational analysis of breast carcinomas from LS families, using established LS-spectrum tumors for comparison. Somatic mutational profiles of 578 cancer-relevant genes were determined for LS-breast cancer (LS-BC, n = 20), non-carrier breast cancer (NC-BC, n = 10), LS-ovarian cancer (LS-OC, n = 16), and LS-colorectal cancer (LS-CRC, n = 18) from the National LS Registry of Finland. Microsatellite and MMR protein analysis stratified LS-BCs into MMR-deficient (dMMR, n = 11) and MMR-proficient (pMMR, n = 9) subgroups. All NC-BCs were pMMR and all LS-OCs and LS-CRCs dMMR. All but one dMMR LS-BCs were hypermutated (> 10 non-synonymous mutations/Mb; average 174/Mb per tumor) and the frequency of MMR-deficiency-associated signatures 6, 20, and 26 was comparable to that in LS-OC and LS-CRC. LS-BCs that were pMMR resembled NC-BCs with respect to somatic mutational loads (4/9, 44%, hypermutated with average mutation count 33/Mb vs. 3/10, 30%, hypermutated with average 88 mutations/Mb), whereas mutational signatures shared features of dMMR LS-BC, LS-OC, and LS-CRC. Epigenetic regulatory genes were significantly enriched as mutational targets in LS-BC, LS-OC, and LS-CRC. Many top mutant genes of our LS-BCs have previously been identified as drivers of unselected breast carcinomas. In conclusion, somatic mutational signatures suggest that conventional MMR status of tumor tissues is likely to underestimate the significance of the predisposing MMR defects as contributors to breast tumorigenesis in LS.
RESUMO
T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell leukemia. Recent studies detected genomic aberrations affecting JAK and STAT genes in T-PLL. Due to the limited number of primary patient samples available, genomic analyses of the JAK/STAT pathway have been performed in rather small cohorts. Therefore, we conducted-via a primary-data based pipeline-a meta-analysis that re-evaluated the genomic landscape of T-PLL. It included all available data sets with sequence information on JAK or STAT gene loci in 275 T-PLL. We eliminated overlapping cases and determined a cumulative rate of 62.1% of cases with mutated JAK or STAT genes. Most frequently, JAK1 (6.3%), JAK3 (36.4%), and STAT5B (18.8%) carried somatic single-nucleotide variants (SNVs), with missense mutations in the SH2 or pseudokinase domains as most prevalent. Importantly, these lesions were predominantly subclonal. We did not detect any strong association between mutations of a JAK or STAT gene with clinical characteristics. Irrespective of the presence of gain-of-function (GOF) SNVs, basal phosphorylation of STAT5B was elevated in all analyzed T-PLL. Fittingly, a significant proportion of genes encoding for potential negative regulators of STAT5B showed genomic losses (in 71.4% of T-PLL in total, in 68.4% of T-PLL without any JAK or STAT mutations). They included DUSP4, CD45, TCPTP, SHP1, SOCS1, SOCS3, and HDAC9. Overall, considering such losses of negative regulators and the GOF mutations in JAK and STAT genes, a total of 89.8% of T-PLL revealed a genomic aberration potentially explaining enhanced STAT5B activity. In essence, we present a comprehensive meta-analysis on the highly prevalent genomic lesions that affect genes encoding JAK/STAT signaling components. This provides an overview of possible modes of activation of this pathway in a large cohort of T-PLL. In light of new advances in JAK/STAT inhibitor development, we also outline translational contexts for harnessing active JAK/STAT signaling, which has emerged as a 'secondary' hallmark of T-PLL.
Assuntos
Artrite Reumatoide/sangue , Evolução Clonal , Hematopoese , Artrite Reumatoide/genética , Biomarcadores , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mutação , Proteínas Proto-Oncogênicas/genéticaRESUMO
UNLABELLED: We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profiling and ex vivo drug sensitivity and resistance testing (DSRT) of patients' cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered five major taxonomic drug-response subtypes based on DSRT profiles, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3-ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses. After progression under DSRT-guided therapies, AML cells displayed significant clonal evolution and novel genomic changes potentially explaining resistance, whereas ex vivo DSRT data showed resistance to the clinically applied drugs and new vulnerabilities to previously ineffective drugs. SIGNIFICANCE: Here, we demonstrate an ISM strategy to optimize safe and effective personalized cancer therapies for individual patients as well as to understand and predict disease evolution and the next line of therapy. This approach could facilitate systematic drug repositioning of approved targeted drugs as well as help to prioritize and de-risk emerging drugs for clinical testing.
Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Medicina de Precisão/métodos , Antineoplásicos/farmacologia , Progressão da Doença , Reposicionamento de Medicamentos , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Transdução de Sinais/efeitos dos fármacos , Resultado do TratamentoRESUMO
Oncogene-induced DNA replication stress is thought to drive genomic instability in cancer. In particular, replication stress can explain the high prevalence of focal genomic deletions mapping within very large genes in human tumors. However, the origin of single-nucleotide substitutions (SNS) in nonfamilial cancers is strongly debated. Some argue that cancers have a mutator phenotype, whereas others argue that the normal DNA replication error rates are sufficient to explain the number of observed SNSs. Here, we sequenced the exomes of 24, mostly precancerous, colon polyps. Analysis of the sequences revealed mutations in the APC, CTNNB1, and BRAF genes as the presumptive cancer-initiating events and many passenger SNSs. We used the number of SNSs in the various lesions to calculate mutation rates for normal colon and adenomas and found that colon adenomas exhibit a mutator phenotype. Interestingly, the SNSs in the adenomas mapped more often than expected within very large genes, where focal deletions in response to DNA replication stress also map. We propose that single-stranded DNA generated in response to oncogene-induced replication stress compromises the repair of deaminated cytosines and other damaged bases, leading to the observed SNS mutator phenotype.
Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Exoma , Adenoma/patologia , Neoplasias Colorretais/patologia , Reparo do DNA/genética , Genoma Humano , Instabilidade Genômica , Humanos , Mutação , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS: We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS: Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS: The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).