Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hepatol Commun ; 6(10): 2765-2780, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866568

RESUMO

Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.


Assuntos
Disbiose , Metabolismo dos Lipídeos , Aciltransferases/genética , Aminoácidos/metabolismo , Animais , Ácidos e Sais Biliares , Coenzima A/metabolismo , Glucose , Humanos , Hiperfagia , Metabolismo dos Lipídeos/genética , Lipídeos , Camundongos , Taurina , Vitaminas
2.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
3.
Noncoding RNA ; 8(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35076584

RESUMO

RNA interference (RNAi) molecules have tremendous potential for cancer therapy but are limited by insufficient potency after intravenous (IV) administration. We previously found that polymer complexes (polyplexes) formed between 3'-cholesterol-modified siRNA (Chol-siRNA) or DsiRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase RNAi potency against stably expressed LUC mRNA in primary syngeneic murine breast tumors after daily IV dosing. Chol-DsiRNA polyplexes, however, maintain LUC mRNA suppression for ~48 h longer after the final dose than Chol-siRNA polyplexes, which suggests that they are the better candidate formulation. Here, we directly compared the activities of Chol-siRNA polyplexes and Chol-DsiRNA polyplexes in primary murine 4T1 breast tumors against STAT3, a therapeutically relevant target gene that is overexpressed in many solid tumors, including breast cancer. We found that Chol-siSTAT3 polyplexes suppressed STAT3 mRNA in 4T1 tumors with similar potency (half-maximal ED50 0.3 mg/kg) and kinetics (over 96 h) as Chol-DsiSTAT3 polyplexes, but with slightly lower activity against total Stat3 protein (29% vs. 42% suppression) and tumor growth (11.5% vs. 8.6% rate-based T/C ratio) after repeated IV administration of equimolar, tumor-saturating doses every other day. Thus, both Chol-siRNA polyplexes and Chol-DsiRNA polyplexes may be suitable clinical candidates for the RNAi therapy of breast cancer and other solid tumors.

4.
Nanomedicine ; 33: 102363, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545405

RESUMO

RNA interference molecules have tremendous potential for cancer therapy but are limited by insufficient potency after i.v. administration. We previously found that Chol-DsiRNA polyplexes formed between cholesterol-modified dicer-substrate siRNA (Chol-DsiRNA) and the cationic diblock copolymer PLL[30]-PEG[5K] greatly increase the activity of Chol-DsiRNA against a stably expressed reporter mRNA in primary murine syngeneic breast tumors after daily i.v. dosing. Here, we provide a more thorough preliminary preclinical study of Chol-DsiRNA polyplexes against the therapeutically relevant target protein, STAT3. We found that Chol-DsiSTAT3 polyplexes greatly increase plasma exposure, distribution, potency, and therapeutic activity of Chol-DsiSTAT3 in primary murine syngeneic 4T1 breast tumors after i.v. administration. Furthermore, inactive Chol-DsiCTRL polyplexes are well tolerated by healthy female BALB/c mice after chronic i.v. administration at 50 mg Chol-DsiCTRL/kg over 28 days. Thus, Chol-DsiRNA polyplexes may be a good candidate for Phase I clinical trials to improve the treatment of breast cancer and other solid tumors.


Assuntos
Neoplasias da Mama/terapia , RNA Helicases DEAD-box/genética , Polietilenoglicóis/química , Polilisina/análogos & derivados , RNA Interferente Pequeno/química , Terapêutica com RNAi/métodos , Ribonuclease III/genética , Animais , Linhagem Celular Tumoral , Colesterol/química , Feminino , Técnicas de Transferência de Genes , Humanos , Camundongos Endogâmicos BALB C , Micelas , Terapia de Alvo Molecular , Polilisina/química , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Distribuição Tecidual
5.
Curr Dev Nutr ; 4(9): nzaa131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908958

RESUMO

BACKGROUND: The mechanistic target of rapamycin complex 1 (mTORC1) is a nutrient-sensing pathway and a key regulator of amino acid and glucose metabolism. Dysregulation of the mTOR pathways is implicated in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes, and pancreatic cancer. OBJECTIVES: We investigated the impact of inhibition of mTORC1/mTORC2 and synergism with metformin on pancreatic tumor growth and metabolomics. METHODS: Cell lines derived from pancreatic tumors of the KPC (KrasG12D/+; p53R172H/+; Pdx1-Cre) transgenic mice model were implanted into the pancreas of C57BL/6 albino mice (n = 10/group). Two weeks later, the mice were injected intraperitoneally with daily doses of 1) Torin 2 (mTORC1/mTORC2 inhibitor) at a high concentration (TH), 2) Torin 2 at a low concentration (TL), 3) metformin at a low concentration (ML), 4) a combination of Torin 2 and metformin at low concentrations (TLML), or 5) DMSO vehicle (control) for 12 d. Tissues and blood samples were collected for targeted xenometabolomics analysis, drug concentration, and cell signaling. RESULTS: Metabolomic analysis of the control and treated plasma samples showed differential metabolite profiles. Phenylalanine was significantly elevated in the TLML group compared with the control (+426%, P = 0.0004), whereas uracil was significantly lower (-38%, P = 0.009). The combination treatment reduced tumor growth in the orthotopic mouse model. TLML significantly decreased pancreatic tumor volume (498 ± 104 mm3; 37%; P < 0.0004) compared with control (1326 ± 134 mm3; 100%), ML (853 ± 67 mm3; 64%), TL (745 ± 167 mm3; 54%), and TH (665 ± 182 mm3; 50%) (ANOVA and post hoc tests). TLML significantly decreased tumor weights (0.66 ± 0.08 g; 52%) compared with the control (1.28 ± 0.19 g; 100%) (P < 0.002). CONCLUSIONS: The combination of mTOR dual inhibition by Torin 2 and metformin is associated with an altered metabolomic profile and a significant reduction in pancreatic tumor burden compared with single-agent therapy, and it is better tolerated.

6.
Nanomedicine ; 29: 102266, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679269

RESUMO

HPMA copolymer-based dexamethasone prodrug (P-Dex) and PEG-based dexamethasone prodrug (PEG-Dex, ZSJ-0228) were previously found to passively target the inflamed kidney and provide potent and sustained resolution of nephritis in NZB/WF1 lupus-prone mice. While both prodrug nanomedicines effectively ameliorate lupus nephritis, they have demonstrated distinctively different safety profiles. To explore the underlining mechanisms of these differences, we conducted a head-to-head comparative PK/BD study of P-Dex and PEG-Dex on NZB/WF1 mice. Overall, the systemic organ/tissue exposures to P-Dex and Dex released from P-Dex were found to be significantly higher than those of PEG-Dex. The high prodrug concentrations were sustained in kidney for only 24 h, which cannot explain their lasting therapeutic efficacy (>1 month). P-Dex showed sustained presence in liver, spleen and adrenal gland, while the presence of PEG-Dex in these organs was transient. This difference in PK/BD profiles may explain PEG-Dex' superior safety than P-Dex.


Assuntos
Dexametasona/química , Nefrite Lúpica/tratamento farmacológico , Nanopartículas/química , Polímeros/farmacologia , Adenosina/análogos & derivados , Adenosina/química , Adenosina/farmacologia , Animais , Dexametasona/farmacologia , Modelos Animais de Doenças , Humanos , Rim/efeitos dos fármacos , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos NZB , Nanomedicina , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Baço/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
7.
J Diabetes Complications ; 34(2): 107494, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31787562

RESUMO

We previously reported that fish oil in combination with cyclooxygenase (COX) inhibitors exerts enhanced hypolipidemic and anti-inflammatory effects in mice. Here, we sought to determine the effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in combination with naproxen (NX), a COX inhibitor, on dyslipidemia and gene expression in adipose tissue (AT) in humans. Obese dyslipidemic patients were randomly assigned to one of these interventions for 12 wk: 1) Standard nutrition counseling (control), 2) ω-3 PUFAs (2 g twice daily), 3) NX (220 mg twice daily), and 4) ω-3 PUFAs (2 g twice daily) + NX (220 mg twice daily). The serum triglycerides showed a trend towards a reduction and a significant reduction (P<0.05) in ω-3 and ω3 + NX-treated subjects, respectively, compared to control. The mRNA expression of vascular cell adhesion molecule-1 (Vcam1), an inflammatory marker, increased significantly in AT of ω-3 PUFA-treated subjects but not in ω-3 PUFAs+NX-treated group. The plasma level of glycine-conjugated hyodeoxycholic acid, a secondary bile acid with hypolipidemic property, increased significantly in ω-3 PUFAs + NX-treated group. Our data suggest that combining NX with ω-3 PUFAs increases their effectiveness in reducing serum TG and favorably altering AT gene expression and plasma bile acid profile.


Assuntos
Inibidores de Ciclo-Oxigenase/uso terapêutico , Dislipidemias/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Óleos de Peixe/uso terapêutico , Naproxeno/uso terapêutico , Obesidade/complicações , Tecido Adiposo/patologia , Adulto , Biópsia , Dislipidemias/sangue , Dislipidemias/etiologia , Feminino , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Sobrepeso/sangue , Sobrepeso/complicações , Projetos Piloto , Estudos Prospectivos , Triglicerídeos/sangue
8.
Mol Pharm ; 17(1): 155-166, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31742407

RESUMO

Antiretroviral therapy (ART) has improved the quality of life in patients infected with HIV-1. However, complete viral suppression within anatomical compartments remains unattainable. This is complicated by adverse side effects and poor adherence to lifelong therapy leading to the emergence of viral drug resistance. Thus, there is an immediate need for cellular and tissue-targeted long-acting (LA) ART formulations. Herein, we describe two LA prodrug formulations of darunavir (DRV), a potent antiretroviral protease inhibitor. Two classes of DRV prodrugs, M1DRV and M2DRV, were synthesized as lipophilic and hydrophobic prodrugs and stabilized into aqueous suspensions designated NM1DRV and NM2DRV. The formulations demonstrated enhanced intracellular prodrug levels with sustained drug retention and antiretroviral activities for 15 and 30 days compared to native DRV formulation in human monocyte-derived macrophages. Pharmacokinetics tests of NM1DRV and NM2DRV administered to mice demonstrated sustained drug levels in blood and tissues for 30 days. These data, taken together, support the idea that LA DRV with sustained antiretroviral responses through prodrug nanoformulations is achievable.


Assuntos
Darunavir/administração & dosagem , Inibidores da Protease de HIV/administração & dosagem , Pró-Fármacos/administração & dosagem , Pró-Fármacos/síntese química , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Darunavir/síntese química , Darunavir/química , Darunavir/farmacocinética , Farmacorresistência Viral/efeitos dos fármacos , Inibidores da Protease de HIV/farmacocinética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Espectrometria de Massas em Tandem
9.
Int J Nanomedicine ; 14: 6231-6247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496683

RESUMO

PURPOSE: A palmitoylated prodrug of emtricitabine (FTC) was synthesized to extend the drug's half-life, antiretroviral activities and biodistribution. METHODS: A modified FTC prodrug (MFTC) was synthesized by palmitoyl chloride esterification. MFTC's chemical structure was evaluated by nuclear magnetic resonance. The created hydrophobic prodrug nanocrystals were encased into a poloxamer surfactant and the pharmacokinetics (PK), biodistribution and antiretroviral activities of the nanoformulation (NMFTC) were assessed. The conversion of MFTC to FTC triphosphates was evaluated. RESULTS: MFTC coated with poloxamer formed stable nanocrystals (NMFTC). NMFTC demonstrated an average particle size, polydispersity index and zeta potential of 350 nm, 0.24 and -20 mV, respectively. Drug encapsulation efficiency was 90%. NMFTC was readily taken up by human monocyte-derived macrophages yielding readily detected intracellular FTC triphosphates and an extended PK profile. CONCLUSION: NMFTC shows improved antiretroviral activities over native FTC. This is coordinate with its extended apparent half-life. The work represents an incremental advance in the development of a long-acting FTC formulation.


Assuntos
Composição de Medicamentos , Emtricitabina/farmacologia , Nanopartículas/química , Pró-Fármacos/farmacologia , Animais , Antirretrovirais/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Emtricitabina/sangue , Emtricitabina/síntese química , Emtricitabina/química , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Masculino , Nanopartículas/ultraestrutura , Pró-Fármacos/síntese química , Pró-Fármacos/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
10.
J Control Release ; 311-312: 201-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31491432

RESUMO

Antiretroviral therapy requires lifelong daily dosing to attain viral suppression, restore immune function, and improve quality of life. As a treatment alternative, long-acting (LA) antiretrovirals can sustain therapeutic drug concentrations in blood for prolonged time periods. The success of recent clinical trials for LA parenteral cabotegravir and rilpivirine highlight the emergence of these new therapeutic options. Further optimization can improve dosing frequency, lower injection volumes, and facilitate drug-tissue distributions. To this end, we report the synthesis of a library of RPV prodrugs designed to sustain drug plasma concentrations and improved tissue biodistribution. The lead prodrug M3RPV was nanoformulated into the stable LA injectable NM3RPV. NM3RPV treatment led to RPV plasma concentrations above the protein-adjusted 90% inhibitory concentration for 25 weeks with substantial tissue depots after a single intramuscular injection in BALB/cJ mice. NM3RPV elicited 13- and 26-fold increases in the RPV apparent half-life and mean residence time compared to native drug formulation. Taken together, proof-of-concept is provided that nanoformulated RPV prodrugs can extend the apparent drug half-life and improve tissue biodistribution. These results warrant further development for human use.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Nanopartículas/administração & dosagem , Pró-Fármacos/administração & dosagem , Rilpivirina/administração & dosagem , Animais , Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , HIV-1/efeitos dos fármacos , Humanos , Macaca mulatta , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pró-Fármacos/farmacocinética , Rilpivirina/farmacocinética , Distribuição Tecidual
11.
Biomaterials ; 222: 119441, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472458

RESUMO

While antiretroviral therapy (ART) has revolutionized treatment and prevention of human immunodeficiency virus type one (HIV-1) infection, regimen adherence, viral mutations, drug toxicities and access stigma and fatigue are treatment limitations. These have led to new opportunities for the development of long acting (LA) ART including implantable devices and chemical drug modifications. Herein, medicinal and formulation chemistry were used to develop LA prodrug nanoformulations of emtricitabine (FTC). A potent lipophilic FTC phosphoramidate prodrug (M2FTC) was synthesized then encapsulated into a poloxamer surfactant (NM2FTC). These modifications extended the biology, apparent drug half-life and antiretroviral activities of the formulations. NM2FTC demonstrated a >30-fold increase in macrophage and CD4+ T cell drug uptake with efficient conversion to triphosphates (FTC-TP). Intracellular FTC-TP protected macrophages against an HIV-1 challenge for 30 days. A single intramuscular injection of NM2FTC, at 45 mg/kg native drug equivalents, into Sprague Dawley rats resulted in sustained prodrug levels in blood, liver, spleen and lymph nodes and FTC-TP in lymph node and spleen cells at one month. In contrast, native FTC-TPs was present for one day. These results are an advance in the transformation of FTC into a LA agent.


Assuntos
Antirretrovirais/química , Antirretrovirais/síntese química , Emtricitabina/química , Pró-Fármacos/química , Pró-Fármacos/síntese química , Amidas/química , Animais , Humanos , Masculino , Ácidos Fosfóricos/química , Poloxâmero/química , Polifosfatos/química , Ratos , Ratos Sprague-Dawley
12.
Biomaterials ; 223: 119476, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525692

RESUMO

A long acting (LA) hydrophobic and lipophilic lamivudine (3TC) was created as a phosphoramidate pronucleotide (designated M23TC). M23TC improved intracellular delivery of active triphosphate metabolites and enhanced antiretroviral and pharmacokinetic (PK) profiles over the native drug. A single treatment of human monocyte derived macrophages (MDM) with nanoformulated M23TC (NM23TC) improved drug uptake, retention, intracellular 3TC triphosphates and antiretroviral activities in MDM and CD4+ T cells. PK tests of NM23TC administered to Sprague Dawley rats demonstrated sustained prodrug and drug triphosphate levels in blood and tissues for 30 days. The development of NM23TC remains a substantive step forward in producing LA slow effective release antiretrovirals for future clinical translation.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/tratamento farmacológico , Lamivudina/administração & dosagem , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , HIV-1 , Humanos , Linfonodos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Nanomedicina/métodos , Nanopartículas/química , Pró-Fármacos , Coelhos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos
13.
Nanomedicine (Lond) ; 13(8): 871-885, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29553879

RESUMO

AIM: While the  therapeutic potential for current long-acting (LA) antiretroviral therapy (ART) is undeniable, ligand-decorated nanoformulated LA-ART could optimize drug delivery to viral reservoirs. The development of decorated ART hinges, however, on formulation processes and manufacture efficiencies. To this end, we compared manufacture and purification techniques for ligand-decorated antiretroviral drug nanocrystals. MATERIALS & METHODS: Ligand-decorated nanoparticle manufacturing was tested using folic acid (FA) nanoformulated cabotegravir. RESULTS: Direct manufacturing of FA-cabotegravir resulted in stable particles with high drug loading and monocyte-macrophage targeting. A one step 'direct' scheme proved superior over differential centrifugation or tangential flow filtration facilitating particle stability and preparation simplicity and efficiency. CONCLUSION: Direct manufacturing of FA nanoparticles provides a path toward large-scale clinical grade manufacturing of cell-targeted LA-ART.


Assuntos
Antirretrovirais/administração & dosagem , Sistemas de Liberação de Medicamentos , Infecções por HIV/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Antirretrovirais/química , Modelos Animais de Doenças , Ácido Fólico/administração & dosagem , Ácido Fólico/química , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/química , Piridonas/administração & dosagem , Piridonas/química , Distribuição Tecidual/efeitos dos fármacos
14.
J Pharm Biomed Anal ; 153: 248-259, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29518644

RESUMO

Nucleoside reverse transcriptase inhibitors (NRTIs) require intracellular phosphorylation to active triphosphate (TP) nucleotide metabolites before they can inhibit the HIV reverse transcriptase. However, monitoring these pharmacologically active TP metabolites is challenging due to their instability and their low concentrations at the pg/ml levels in blood and tissues. The combination of lamivudine (3TC) and abacavir (ABC) is one of the first lines for HIV therapy. Therefore, a sensitive, selective, accurate, and precise LC-MS/MS method was developed and validated for the simultaneous quantification of 3TC- and ABC-TP metabolites in mouse blood and tissues. Calibration curves were linear over the range of 10-100,000 pg/ml for 3TC-TP and 4-40,000 pg/ml for carbovir-TP (CBV-TP; phosphorylated metabolite of ABC). This corresponds to 2.1-21,322 fmol/106 cells for 3TC-TP and 0.8-8000 fmol/106 cells for CBV-TP. Accuracy and precision were less than 15% for all quality control sample (QCs), and absolute extraction recovery of were >65% for 3TC-TP and >90% for CBV-TP. The method was optimized to ensure stability of TP samples and standards during sample collection, preparation, analysis, and storage conditions. This method has enhanced sensitivity and requires smaller amounts of blood and tissue samples compared to previous LC-MS/MS methods for 3TC- and CBV-TP quantification. The developed method was successfully applied to characterize the pharmacokinetic profile of TP metabolites in mouse peripheral blood mononuclear cells (PBMCs), spleen, lymph nodes, and liver cells. In addition, another direct, simple, and high-throughput method for the quantification of TP standards was developed and used for the analysis of stability samples.


Assuntos
Didesoxinucleosídeos/sangue , Lamivudina/sangue , Polifosfatos/sangue , Animais , Fármacos Anti-HIV/sangue , Cromatografia Líquida/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Transcriptase Reversa/sangue , Espectrometria de Massas em Tandem/métodos
15.
Biomaterials ; 151: 53-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29059541

RESUMO

Long-acting parenteral (LAP) antiretroviral drugs have generated considerable interest for treatment and prevention of HIV-1 infection. One new LAP is cabotegravir (CAB), a highly potent integrase inhibitor, with a half-life of up to 54 days, allowing for every other month parenteral administrations. Despite this excellent profile, high volume dosing, injection site reactions and low body fluid drug concentrations affect broad use for virus infected and susceptible people. To improve the drug delivery profile, we created a myristoylated CAB prodrug (MCAB). MCAB formed crystals that were formulated into nanoparticles (NMCAB) of stable size and shape facilitating avid monocyte-macrophage entry, retention and reticuloendothelial system depot formulation. Drug release kinetics paralleled sustained protection against HIV-1 challenge. After a single 45 mg/kg intramuscular injection to BALB/cJ mice, the NMCAB pharmacokinetic profiles was 4-times greater than that recorded for CAB LAP. These observations paralleled replicate measurements in rhesus macaques. The results coupled with improved viral restriction in human adult lymphocyte reconstituted NOD/SCID/IL2Rγc-/- mice led us to conclude that NMCAB can improve biodistribution and viral clearance profiles upon current CAB LAP formulations.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Nanopartículas/química , Pró-Fármacos/química , Piridonas/química , Adulto , Animais , Fármacos Anti-HIV/administração & dosagem , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Infecções por HIV/tratamento farmacológico , Meia-Vida , Humanos , Cinética , Macaca mulatta , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Piridonas/administração & dosagem , Piridonas/farmacologia , Solubilidade , Propriedades de Superfície
16.
Hepatology ; 67(6): 2150-2166, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29159825

RESUMO

Alcoholic liver disease (ALD) is associated with changes in the intestinal microbiota. Functional consequences of alcohol-associated dysbiosis are largely unknown. The aim of this study was to identify a mechanism of how changes in the intestinal microbiota contribute to ALD. Metagenomic sequencing of intestinal contents demonstrated that chronic ethanol feeding in mice is associated with an over-representation of bacterial genomic DNA encoding choloylglycine hydrolase, which deconjugates bile acids in the intestine. Bile acid analysis confirmed an increased amount of unconjugated bile acids in the small intestine after ethanol administration. Mediated by a lower farnesoid X receptor (FXR) activity in enterocytes, lower fibroblast growth factor (FGF)-15 protein secretion was associated with increased hepatic cytochrome P450 enzyme (Cyp)-7a1 protein expression and circulating bile acid levels. Depletion of the commensal microbiota with nonabsorbable antibiotics attenuated hepatic Cyp7a1 expression and reduced ALD in mice, suggesting that increased bile acid synthesis is dependent on gut bacteria. To restore intestinal FXR activity, we used a pharmacological intervention with the intestine-restricted FXR agonist fexaramine, which protected mice from ethanol-induced liver injury. Whereas bile acid metabolism was only minimally altered, fexaramine treatment stabilized the gut barrier and significantly modulated hepatic genes involved in lipid metabolism. To link the beneficial metabolic effect to FGF15, a nontumorigenic FGF19 variant-a human FGF15 ortholog-was overexpressed in mice using adeno-associated viruses. FGF19 treatment showed similarly beneficial metabolic effects and ameliorated alcoholic steatohepatitis. CONCLUSION: Taken together, alcohol-associated metagenomic changes result in alterations of bile acid profiles. Targeted interventions improve bile acid-FXR-FGF15 signaling by modulation of hepatic Cyp7a1 and lipid metabolism, and reduce ethanol-induced liver disease in mice. (Hepatology 2018;67:2150-2166).


Assuntos
Ácidos e Sais Biliares/fisiologia , Etanol/administração & dosagem , Fatores de Crescimento de Fibroblastos/fisiologia , Microbioma Gastrointestinal/fisiologia , Hepatopatias Alcoólicas/etiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Drug Metab Dispos ; 45(7): 721-733, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396527

RESUMO

In the search for novel bile acid (BA) biomarkers of liver organic anion-transporting polypeptides (OATPs), cynomolgus monkeys received oral rifampicin (RIF) at four dose levels (1, 3, 10, and 30 mg/kg) that generated plasma-free Cmax values (0.06, 0.66, 2.57, and 7.79 µM, respectively) spanning the reported in vitro IC50 values for OATP1B1 and OATP1B3 (≤1.7 µM). As expected, the area under the plasma concentration-time curve (AUC) of an OATP probe drug (i.v. 2H4-pitavastatin, 0.2 mg/kg) was increased 1.2-, 2.4-, 3.8-, and 4.5-fold, respectively. Plasma of RIF-dosed cynomolgus monkeys was subjected to a liquid chromatography-tandem mass spectrometry method that supported the analysis of 30 different BAs. Monkey urine was profiled, and we also determined that the impact of RIF on BA renal clearance was minimal. Although sulfated BAs comprised only 1% of the plasma BA pool, a robust RIF dose response (maximal ≥50-fold increase in plasma AUC) was observed for the sulfates of five BAs [glycodeoxycholate (GDCA-S), glycochenodeoxycholate (GCDCA-S), taurochenodeoxycholate, deoxycholate (DCA-S), and taurodeoxycholate (TDCA-S)]. In vitro, RIF (≤100 µM) did not inhibit cynomolgus monkey liver cytosol-catalyzed BA sulfation and cynomolgus monkey hepatocyte-mediated uptake of representative sulfated BAs (GDCA-S, GCDCA-S, DCA-S, and TDCA-S) was sodium-independent and inhibited (≥70%) by RIF (5 µM); uptake of taurocholic acid was sensitive to sodium removal (74% decrease) and relatively refractory to RIF (≤21% inhibition). We concluded that sulfated BAs may serve as sensitive biomarkers of cynomolgus monkey OATPs and that exploration of their utility as circulating human OATP biomarkers is warranted.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Macaca fascicularis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rifampina/farmacologia , Sulfatos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Quinolinas/farmacologia
18.
J Nutr Biochem ; 42: 149-159, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28187366

RESUMO

We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/efeitos adversos , Ciclo-Oxigenase 1 , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/dietoterapia , Cirrose Hepática/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Receptor de Pregnano X , Pirazóis/farmacologia , Receptores de Esteroides/metabolismo
19.
J Clin Invest ; 127(3): 857-873, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28134625

RESUMO

Long-acting anti-HIV products can substantively change the standard of care for patients with HIV/AIDS. To this end, hydrophobic antiretroviral drugs (ARVs) were recently developed for parenteral administration at monthly or longer intervals. While shorter-acting hydrophilic drugs can be made into nanocarrier-encased prodrugs, the nanocarrier encasement must be boosted to establish long-acting ARV depots. The mixed-lineage kinase 3 (MLK-3) inhibitor URMC-099 provides this function by affecting autophagy. Here, we have shown that URMC-099 facilitates ARV sequestration and its antiretroviral responses by promoting the nuclear translocation of the transcription factor EB (TFEB). In monocyte-derived macrophages, URMC-099 induction of autophagy led to retention of nanoparticles containing the antiretroviral protease inhibitor atazanavir. These nanoparticles were localized within macrophage autophagosomes, leading to a 4-fold enhancement of mitochondrial and cell vitality. In rodents, URMC-099 activation of autophagy led to 50-fold increases in the plasma drug concentration of the viral integrase inhibitor dolutegravir. These data paralleled URMC-099-mediated induction of autophagy and the previously reported antiretroviral responses in HIV-1-infected humanized mice. We conclude that pharmacologic induction of autophagy provides a means to extend the action of a long-acting, slow, effective release of antiretroviral therapy.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Antirretrovirais/farmacologia , Autofagia/efeitos dos fármacos , HIV-1/metabolismo , Macrófagos/metabolismo , Nanopartículas , Síndrome da Imunodeficiência Adquirida/metabolismo , Animais , Sulfato de Atazanavir/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Masculino , Camundongos , Oxazinas , Piperazinas , Piridinas/farmacologia , Piridonas , Pirróis/farmacologia
20.
J Acquir Immune Defic Syndr ; 74(3): e75-e83, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559685

RESUMO

BACKGROUND: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2',3'-dideoxy-3'-thiacytidine, 3TC). METHODS: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. RESULTS: A stable drug formulation was produced by poloxamer encasement that improved monocyte-macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. CONCLUSIONS: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.


Assuntos
Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/farmacocinética , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/farmacocinética , Lamivudina/farmacologia , Lamivudina/farmacocinética , Poloxâmero/síntese química , Animais , Fármacos Anti-HIV/síntese química , Preparações de Ação Retardada/síntese química , Portadores de Fármacos/síntese química , Humanos , Lamivudina/síntese química , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA