Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 64: 153081, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31568956

RESUMO

BACKGROUND: Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS: The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS: Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION: The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/etiologia , Doenças das Plantas/etiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Agrobacterium tumefaciens/patogenicidade , Animais , Antibióticos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos , Imunidade Vegetal , Plantas/microbiologia , Metabolismo Secundário
3.
Front Plant Sci ; 7: 2047, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119723

RESUMO

Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1, confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.

4.
Planta ; 238(5): 819-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23835810

RESUMO

The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.


Assuntos
Diferenciação Celular , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/citologia , Adaptação Fisiológica , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/anatomia & histologia
5.
Plant Cell ; 24(1): 66-79, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253226

RESUMO

The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.


Assuntos
Giberelinas/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Dados de Sequência Molecular , Transdução de Sinais/fisiologia
6.
Plant Signal Behav ; 6(6): 815-20, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21646869

RESUMO

Macromolecules may transfer between the cytoplasm and the nucleus only through specific gates - the nuclear pore complexes (NPCs). Translocation of nucleic acids and large proteins requires the presence of a nuclear localization signal (NLS) within the transported molecule. This NLS is recognized by a class of soluble transport receptors termed karyopherins α and beta. We previously characterized the expression pattern of the tomato karyopherin α 1 (LeKAPα1) promoter in transformed tobacco plants. Expression of LeKAPα1 was mainly observed in growing tissues where cell division and extension is rapid. The expression pattern of LeKAPα1 resembled that of auxin-responsive genes. This led us to suggest that auxin participates in the regulation of LeKAPα1 expression. Here we characterized the correlation between auxin level and the activity of the LeKAPα1 promoter. To this end, transgenic tobacco plants carrying the GUS reporter gene under the control of the LeKAPα1 promoter were treated with various levels of exogenous auxin. We also studied transgenic plants in which we increased the endogenous levels of auxin. For this, we expressed in plants both the LeKAPα1 promoter-GUS reporter and the Agrobacterium tumefaciens iaaM gene, which increases the endogenous levels of auxin. The results indicate that the auxin indole-3-acetic acid (IAA) can induce LeKAPα1 expression. We also identified that the sites and levels of LeKAPα1 expression correlated with the endogenous pathways of polar auxin transport.


Assuntos
Ácidos Indolacéticos/farmacologia , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , alfa Carioferinas/metabolismo , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética , alfa Carioferinas/genética
7.
Plant Biotechnol J ; 8(4): 425-35, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20070875

RESUMO

Enhancing plant height and growth rates is a principal objective of the fiber, pulp, wood and biomass product industries. Many biotechnological systems have been established to advance that task with emphasis on increasing the concentration of the plant hormone gibberellin, or on its signalling. In this respect, the most studied gibberellin biosynthesis enzyme is the GA 20-oxidase which catalyses the rate limiting step of the pathway. Overexpression of the gene resulted in an excessively high activity of the gibberellin deactivating enzyme, GA 2-oxidase. Consequently, this feedback regulation limits the intended outcome. We assume that silencing GA 2-oxidase transcription would abolish this antithetical effect, thereby allowing greater gibberellin accumulation. Here, we show that silencing the gibberellin deactivating enzyme in tobacco model plants results in a dramatic improvement of their growth characteristics, compared with the wild type and GA 20-oxidase over-expressing plants. Moreover, the number of xylem fiber cells in the silenced lines exceeded that of GA 20-oxidase over-expressing plants, potentially, making GA 2-oxidase silencing more profitable for the wood and fiber industries. Interestingly, crossing GA 20-oxidase over-expressing plants with GA 2-oxidase silenced plants did not yield consequential additive effects. Our findings unveil the benefits of silencing GA 2-oxidase to substantially increase tobacco growth and fiber production, which suggest using this approach in cultivated forest plantations and industrial herbaceous plants, worldwide.


Assuntos
Inativação Gênica , Oxigenases de Função Mista/genética , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/citologia , Plantas Geneticamente Modificadas , Nicotiana/citologia , Nicotiana/genética , Transformação Genética
8.
Dev Growth Differ ; 46(6): 515-22, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15610141

RESUMO

The karyopherin alpha1 (LeKAPalpha 1) gene of tomato (Lycopersicon esculentum) encodes a receptor involved in nuclear import. To analyze the expression pattern of this gene, a genomic clone containing its upstream region was isolated and sequenced. To study the promoter functionality, a 2170 bp fragment (LM1), was fused to glucuronidase (GUS) and introduced into petunia cells by particle bombardment. For further characterization of the promoter, one inverse and three deletion constructs were studied in cell suspension. To follow its expression in tobacco leaves, transgenic plants expressing GUS under the control of the LM1 promoter were made. Expression of LM1-GUS was largely restricted to actively growing leaf regions, suggesting possible involvement of active cell division and plant growth regulators in LeKAPalpha 1 expression.


Assuntos
Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Solanum lycopersicum/genética , alfa Carioferinas/genética , Sequência de Bases , Clonagem Molecular , Biblioteca Gênica , Genes Reporter/genética , Glucuronidase/análise , Glucuronidase/genética , Dados de Sequência Molecular , Folhas de Planta/química , Deleção de Sequência/genética , alfa Carioferinas/fisiologia
9.
Plant Physiol ; 133(3): 1024-37, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14526106

RESUMO

Vascular differentiation and epidermal disruption are associated with establishment of tumors induced by Agrobacterium tumefaciens. Here, we address the relationship of these processes to the redirection of nutrient-bearing water flow and carbohydrate delivery for tumor growth within the castor bean (Ricinus communis) host. Treatment with aminoethoxyvinyl-glycine showed that vascular differentiation and epidermal disruption were central to ethylene-dependent tumor establishment. CO2 release paralleled tumor growth, but water flow increased dramatically during the first 3 weeks. However, tumor water loss contributed little to water flow to host shoots. Tumor water loss was followed by accumulation of the osmoprotectants, sucrose (Suc) and proline, in the tumor periphery, shifting hexose-to-Suc balance in favor of sugar signals for maturation and desiccation tolerance. Concurrent activities and sites of action for enzymes of Suc metabolism changed: Vacuolar invertase predominated during initial import of Suc into the symplastic continuum, corresponding to hexose concentrations in expanding tumors. Later, Suc synthase (SuSy) and cell wall invertase rose in the tumor periphery to modulate both Suc accumulation and descending turgor for import by metabolization. Sites of abscisic acid immunolocalization correlated with both central vacuolar invertase and peripheral cell wall invertase. Vascular roles were indicated by SuSy immunolocalization in xylem parenchyma for inorganic nutrient uptake and in phloem, where resolution allowed SuSy identification in sieve elements and companion cells, which has widespread implications for SuSy function in transport. Together, data indicate key roles for ethylene-dependent vascularization and cuticular disruption in the redirection of water flow and carbohydrate transport for successful tumor establishment.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Glucosiltransferases/metabolismo , Ricinus communis/metabolismo , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo , Ácido Abscísico/metabolismo , Agrobacterium tumefaciens/genética , Transporte Biológico/fisiologia , Dióxido de Carbono/metabolismo , Ricinus communis/genética , Ricinus communis/microbiologia , Diferenciação Celular/fisiologia , Parede Celular/metabolismo , Glucosiltransferases/genética , Imuno-Histoquímica , Transpiração Vegetal/fisiologia , Tumores de Planta/genética , Tumores de Planta/microbiologia , Prolina/metabolismo , Água/metabolismo , beta-Frutofuranosidase/genética
10.
Planta ; 218(2): 163-78, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14523649

RESUMO

Agrobacterium tumefaciens-induced plant tumors accumulate considerable concentrations of free auxin. To determine possible mechanisms by which high auxin concentrations are maintained, we examined the pattern of auxin and flavonoid distribution in plant tumors. Tumors were induced in transformants of Trifolium repens (L.), containing the beta-glucuronidase ( GUS)-fused auxin-responsive promoter ( GH3) or chalcone synthase ( CHS2) genes, and in transformants of Arabidopsis thaliana (L.) Heynh., containing the GUS-fused synthetic auxin response element DR5. Expression of GH3::GUS and DR5::GUS was strong in proliferating metabolically active tumors, thus suggesting high free-auxin concentrations. Immunolocalization of total auxin with indole-3-acetic acid antibodies was consistent with GH3::GUS expression indicating the highest auxin concentration in the tumor periphery. By in situ staining with diphenylboric acid 2-aminoethyl ester, by thin-layer chromatography, reverse-phase high-performance liquid chromatography, and two-photon laser-scanning microscopy spectrometry, tumor-specific flavones, isoflavones and pterocarpans were detected, namely 7,4'-dihydroxyflavone (DHF), formononetin, and medicarpin. DHF was the dominant flavone in high free-auxin-accumulating stipules of Arabidopsis leaf primordia. Flavonoids were localized at the sites of strongest auxin-inducible CHS2::GUS expression in the tumor that was differentially modulated by auxin in the vascular tissue. CHS mRNA expression changes corresponded to the previously analyzed auxin concentration profile in tumors and roots of tumorized Ricinus plants. Application of DHF to stems, apically pretreated with alpha-naphthaleneacetic acid, inhibited GH3::GUS expression in a fashion similar to 1-N-naphthyl-phthalamic acid. Tumor, root and shoot growth was poor in inoculated tt4(85) flavonoid-deficient CHS mutants of Arabidopsis. It is concluded that CHS-dependent flavonoid aglycones are possibly endogenous regulators of the basipetal auxin flux, thereby leading to free-auxin accumulation in A. tumefaciens-induced tumors. This, in turn, triggers vigorous proliferation and vascularization of the tumor tissues and suppresses their further differentiation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flavonoides/biossíntese , Ácidos Indolacéticos/biossíntese , Tumores de Planta/etiologia , Rhizobium/patogenicidade , Trifolium/crescimento & desenvolvimento , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/metabolismo , Hibridização in Situ Fluorescente , Isoflavonas/biossíntese , Mutação , Ftalimidas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pterocarpanos/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trifolium/genética , Trifolium/microbiologia
11.
Planta ; 216(3): 512-22, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12520344

RESUMO

The development of Agrobacterium tumefaciens-induced plant tumors primarily depends on the excessive production of auxin and cytokinin by enzymes encoded on T-DNA genes integrated into the plant genome. The aim of the present study was to investigate the involvement of additional phytohormone signals in the vascularization required for rapid tumor proliferation. In stem tumors of Ricinus communis L., free auxin and zeatin riboside concentrations increased within 2 weeks to 15-fold the concentrations in control stem tissue. Auxin and cytokinin immunolocalization revealed the highest concentrations within and around tumor vascular bundles with concentration gradients. The time-course of changes in free auxin concentration in roots was inversely correlated with that in the tumors. The high ethylene emission induced by increased auxin- and cytokinin correlated with a 36-fold accumulation of abscisic acid in tumors. Ethylene emitted from tumors and exogenously applied ethylene caused an increase in abscisic acid concentrations also in the host leaves, with a diminution in leaf water vapor conductance. Jasmonic acid concentration reached a maximum already within the first week of bacterial infection. A wound effect could be excluded. The results demonstrate the concerted interaction of a cascade of transiently induced, non-T-DNA-encoded phytohormones jasmonic acid, ethylene and abscisic acid with T-DNA-encoded auxin and zeatin riboside plus trans-zeatin, all of which are required for successful plant tumor vascularization and development together with inhibition of host plant growth.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/microbiologia , Tumores de Planta/microbiologia , Ricinus/microbiologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Ciclopentanos/metabolismo , Citocininas/metabolismo , Citocininas/farmacologia , Etilenos/metabolismo , Imuno-Histoquímica , Ácidos Indolacéticos/metabolismo , Microscopia Imunoeletrônica , Oxilipinas , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Ricinus/química , Ricinus/crescimento & desenvolvimento , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA