Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 605, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821814

RESUMO

Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa ß (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.


Assuntos
Paratuberculose , Humanos , Feminino , Bovinos , Animais , Paratuberculose/genética , Estudo de Associação Genômica Ampla/veterinária , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição de Resposta de Crescimento Precoce/genética
2.
Front Immunol ; 14: 1042638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911672

RESUMO

The genetic loci influencing individual resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are still largely unknown. In the current study, we searched for genetic loci associated with resistance to MAP infection by evaluating the performance of monocyte-derived macrophages (MDMs) isolated from the peripheral blood of 75 healthy Holsteins cows and infected ex vivo with MAP. Bacterial load (log colony-forming units, log CFUs) within MDMs was quantified at 2 h and 7 days p. i. using a BACTEC MGIT 960 instrument. In addition, the expression levels of some genes with important roles in the innate immune response including epiregulin (EREG), complement component C3 (C3), galectin-9 (Gal9), and nitric oxide (NO-) were measured in the supernatant of the infected cells. DNA from peripheral blood samples of the animals included in the study was isolated and genotyped with the EuroG MD bead Chip (44,779 single nucleotide-polymorphisms, SNPs). Linear mixed models were used to calculate the heritability (h2 ) estimates for each indicator of MDM performance, MAP load within MDMs and EREG, C3, Gal9, and NO-expression. After performing a genome-wide association study, the only phenotypes that showed SNPs with a significant association were the bacterial load within MDMs at 2 h (h2 = 0. 87) and 7 days (h2 = 0.83) p.i. A total of 6 SNPs, 5 candidate genes, and one microRNA on the Bos taurus chromosomes BTA2, BTA17, BTA18, and BTA21 were associated with MAP load at 2 h p.i. Overlap was seen in two SNPs associated with the log CFUs at 2 h and 7 d p.i. The identified SNPs had negative regression coefficients, and were, therefore, associated with a low bacterial load within MDMs. Some of the identified SNPs were located within QTLs previously associated with longevity, reproductive, and udder health traits. Some of the identified candidate genes; Oxysterol Binding Protein Like 6, Cysteine and Serine Rich Nuclear Protein 3, and the Coiled-Coil Domain Containing 92 regulate cellular cholesterol trafficking and efflux, apoptosis, and interferon production, respectively. Taken together, our results define a heritable and distinct immunogenetic profile in MAP-infected macrophages designed to limit bacterial load early after infection.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Feminino , Bovinos , Animais , Estudo de Associação Genômica Ampla , Macrófagos , Imunidade Inata
3.
Sci Rep ; 11(1): 20177, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635747

RESUMO

Bovine paratuberculosis (PTB), caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic granulomatous enteritis that affects cattle worldwide. According to their severity and extension, PTB-associated histological lesions have been classified into the following groups; focal, multifocal, and diffuse. It is unknown whether these lesions represent sequential stages or divergent outcomes. In the current study, the associations between host genetic and pathology were explored by genotyping 813 Spanish Holstein cows with no visible lesions (N = 373) and with focal (N = 371), multifocal (N = 33), and diffuse (N = 33) lesions in gut tissues and regional lymph nodes. DNA from peripheral blood samples of these animals was genotyped with the bovine EuroG MD Bead Chip, and the corresponding genotypes were imputed to whole-genome sequencing (WGS) data using the 1000 Bull genomes reference population. A genome-wide association study (GWAS) was performed using the WGS data and the presence or absence of each type of histological lesion in a case-control approach. A total of 192 and 92 single nucleotide polymorphisms (SNPs) defining 13 and 9 distinct quantitative trait loci (QTLs) were highly-associated (P ≤ 5 × 10-7) with the multifocal (heritability = 0.075) and the diffuse (heritability = 0.189) lesions, respectively. No overlap was seen in the SNPs controlling these distinct pathological outcomes. The identified QTLs overlapped with some QTLs previously associated with PTB susceptibility, bovine tuberculosis susceptibility, clinical mastitis, somatic cell score, bovine respiratory disease susceptibility, tick resistance, IgG level, and length of productive life. Pathway analysis with candidate genes overlapping the identified QTLs revealed a significant enrichment of the keratinization pathway and cholesterol metabolism in the animals with multifocal and diffuse lesions, respectively. To test whether the enrichment of SNP variants in candidate genes involved in the cholesterol metabolism was associated with the diffuse lesions; the levels of total cholesterol were measured in plasma samples of cattle with focal, multifocal, or diffuse lesions or with no visible lesions. Our results showed reduced levels of plasma cholesterol in cattle with diffuse lesions. Taken together, our findings suggested that the variation in MAP-associated pathological outcomes might be, in part, genetically determined and indicative of distinct host responses.


Assuntos
Doenças dos Bovinos/patologia , Estudo de Associação Genômica Ampla/veterinária , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Feminino , Genótipo , Paratuberculose/genética , Paratuberculose/microbiologia
4.
Animals (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065919

RESUMO

Paratuberculosis (PTB), a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), is responsible for important economic losses in the dairy industry. Our previous RNA-sequencing (RNA-Seq) analysis showed that bovine intelectin 2 (ITLN2) precursor gene was overexpressed in ileocecal valve (ICV) samples of animals with focal (log2 fold-change = 10.6) and diffuse (log2 fold-change = 6.8) PTB-associated lesions compared to animals without lesions. This study analyzes the potential use of ITLN2, a protein that has been described as fundamental in the innate immune response to infections, as a biomarker of MAP infection. The presence of ITLN2 was investigated by quantitative immunohistochemical analysis of ICV samples of 20 Holstein Friesian cows showing focal (n = 5), multifocal (n = 5), diffuse (n = 5) and no histological lesions (n = 5). Significant differences were observed in the mean number of ITLN2 immunostained goblet and Paneth cells between the three histopathological types and the control. The number of immunolabelled cells was higher in the focal histopathological type (116.9 ± 113.9) followed by the multifocal (108.7 ± 140.5), diffuse (76.5 ± 97.8) and control types (41.0 ± 81.3). These results validate ITLN2 as a post-mortem biomarker of disease progression.

5.
Sci Rep ; 11(1): 313, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432064

RESUMO

Although genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with the susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection, only a few functional mutations for bovine paratuberculosis (PTB) have been characterized. Expression quantitative trait loci (eQTLs) are genetic variants typically located in gene regulatory regions that alter gene expression in an allele-specific manner. eQTLs can be considered as functional links between genomic variants, gene expression, and ultimately phenotype. In the current study, peripheral blood (PB) and ileocecal valve (ICV) gene expression was quantified by RNA-Seq from fourteen Holstein cattle with no lesions and with PTB-associated histopathological lesions in gut tissues. Genotypes were generated from the Illumina LD EuroG10K BeadChip. The associations between gene expression levels (normalized read counts) and genetic variants were analyzed by a linear regression analysis using R Matrix eQTL 2.2. This approach allowed the identification of 192 and 48 cis-eQTLs associated with the expression of 145 and 43 genes in the PB and ICV samples, respectively. To investigate potential relationships between these cis-eQTLs and MAP infection, a case-control study was performed using the genotypes for all the identified cis-eQTLs and phenotypical data (histopathology, ELISA for MAP-antibodies detection, tissue PCR, and bacteriological culture) of 986 culled cows. Our results suggested that the heterozygous genotype in the cis-eQTL-rs43744169 (T/C) was associated with the up-regulation of the MDS1 and EVI1 complex (MECOM) expression, with positive ELISA, PCR, and bacteriological culture results, and with increased risk of progression to clinical PTB. As supporting evidence, the presence of the minor allele was associated with higher MECOM levels in plasma samples from infected cows and with increased MAP survival in an ex-vivo macrophage killing assay. Moreover, the presence of the two minor alleles in the cis-eQTL-rs110345285 (C/C) was associated with the dysregulation of the eukaryotic elongation factor 1-α2 (eEF1A2) expression and with increased ELISA (OD) values. Finally, the presence of the minor allele in the cis-eQTL rs109859270 (C/T) was associated with the up-regulation of the U1 spliceosomal RNA expression and with an increased risk of progression to clinical PTB. The introduction of these novel functional variants into marker-assisted breeding programs is expected to have a relevant effect on PTB control.


Assuntos
Regulação da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1/genética , Paratuberculose/genética , Fator 1 de Elongação de Peptídeos/genética , Locos de Características Quantitativas/genética , Spliceossomos/genética , Animais , Bovinos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único
6.
PLoS One ; 15(9): e0236336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881863

RESUMO

Bovine paratuberculosis (PTB) is a chronic granulomatous enteritis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), responsible for important economic losses in the dairy industry. Current diagnostic methods have low sensitivities for detection of latent forms of MAP infection, defined by focal granulomatous lesions and scarce humoral response or MAP presence. In contrast, patent infections correspond to multifocal and diffuse types of enteritis where there is increased antibody production, and substantial mycobacterial load. Our previous RNA-Seq analysis allowed the selection of five candidate biomarkers overexpressed in peripheral blood of MAP infected Holstein cows with focal (ABCA13 and MMP8) and diffuse (FAM84A, SPARC and DES) lesions vs. control animals with no detectable PTB-associated lesions in intestine and regional lymph nodes. The aim of the current study was to assess the PTB diagnostic potential of commercial ELISAs designed for the specific detection of these biomarkers. The ability of these ELISAs to identify animals with latent and/or patent forms of MAP infection was investigated using serum from naturally infected cattle (n = 88) and non-infected control animals (n = 67). ROC analysis revealed that the ABCA13-based ELISA showed the highest diagnostic accuracy for the detection of infected animals with focal lesions (AUC 0.837, sensitivity 79.25% and specificity 88.06%) and with any type of histological lesion (AUC 0.793, sensitivity 69.41% and specificity 86.57%) improving on the diagnostic performance of the popular IDEXX ELISA and other conventional diagnostic methods. SPARC and MMP8 showed the highest diagnostic accuracy for the detection of animals with multifocal (AUC 0.852) and diffuse lesions (AUC 0.831), respectively. In conclusion, our results suggest that quantification of ABCA13, SPARC and MMP8 by ELISA has the potential for implementation as a diagnostic tool to reliably identify MAP infection, greatly improving early detection of MAP latent infections when antibody responses and fecal shedding are undetectable using conventional diagnostic methods.


Assuntos
Doenças dos Bovinos/diagnóstico , Bovinos/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Animais , Biomarcadores/análise , Doenças dos Bovinos/patologia , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Feminino , Paratuberculose/patologia , Curva ROC
7.
Sci Rep ; 9(1): 14845, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619718

RESUMO

Paratuberculosis is chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Whole RNA-sequencing (RNA-Seq) is a promising source of novel biomarkers for early MAP infection and disease progression in cattle. Since the blood transcriptome is widely used as a source of biomarkers, we analyzed whether it recapitulates, at least in part, the transcriptome of the ileocecal valve (ICV), the primary site of MAP colonization. Total RNA was prepared from peripheral blood (PB) and ICV samples, and RNA-Seq was used to compare gene expression between animals with focal or diffuse histopathological lesions in gut tissues versus control animals with no detectable signs of infection. Our results demonstrated both shared, and PB and ICV-specific gene expression in response to a natural MAP infection. As expected, the number of differentially expressed (DE) genes was larger in the ICV than in the PB samples. Among the DE genes in the PB and ICV samples, there were some common genes irrespective of the type of lesion including the C-X-C motif chemokine ligand 8 (CXCL8/IL8), apolipoprotein L (APOLD1), and the interferon inducible protein 27 (IFI27). The biological processes (BP) enriched in the PB gene expression profiles from the cows with diffuse lesions included the killing of cells of other organism, defense response, immune response and the regulation of neutrophil chemotaxis. Two of these BP, the defense and immune response, were also enriched in the ICV from the cows with diffuse lesions. Metabolic analysis of the DE genes revealed that the N-glycan biosynthesis, bile secretion, one-carbon pool by folate and purine metabolism were significantly enriched in the ICV from the cows with focal lesions. In the ICV from cows with diffuse lesions; the valine, leucine and isoleucine degradation route, purine metabolism, vitamin digestion and absorption and the cholesterol routes were enriched. Some of the identified DE genes, BP and metabolic pathways will be studied further to develop novel diagnostic tools, vaccines and immunotherapeutics.


Assuntos
Doenças dos Bovinos/imunologia , Valva Ileocecal/imunologia , Valva Ileocecal/metabolismo , Interleucina-8 , Paratuberculose/imunologia , Animais , Biomarcadores/sangue , Bovinos , Feminino , Valva Ileocecal/patologia , Interleucina-8/sangue , Interleucina-8/imunologia , Mycobacterium avium subsp. paratuberculosis/imunologia , RNA-Seq , Transdução de Sinais , Transcriptoma
8.
J Theor Biol ; 468: 82-91, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30794839

RESUMO

Understanding why pathogenic Mycobacterium avium subsp. paratuberculosis (Map) isolates cause disparate disease outcomes with differing magnitudes of severity is important in designing and implementing new control strategies. We applied a suite of mathematical models: i) general linear, ii) and neurofuzzy logic, to explain how the host of origin of several Map isolates, Map genotype, host, macrophage-based in vitro model and time post-infection contributed to the infection. A logistic growth ordinary differential equation (ODE) model was applied to estimate within macrophage growth rates for the different Map isolates. The models revealed different susceptibilities of bovine and ovine macrophages to Map infection and confirmed distinct virulence profiles for the isolates, judged by their ability to grow within macrophages. Ovine macrophages were able to internalize Map isolates more efficiently than bovine macrophages. While bovine macrophages were able to internalize Map isolates from cattle with more efficiency, ovine macrophages were more efficient in internalizing ovine isolates. Overall, Map isolates from goat and sheep grew minimally within macrophages or did not grow but were able to persist by maintaining its initial population. In contrast, the ability of the bovine isolates and the non-domesticated animal isolates to grow to higher CFU numbers within macrophages suggests that these isolates are more virulent than the sheep and goat isolates, or that these isolates are better adapted to infect domestic ruminants. Overall, our study confirms the different virulence levels for the Map isolates and susceptibility profiles of host macrophages, which is crucial in increasing our understanding of Map infection.


Assuntos
Macrófagos/microbiologia , Modelos Teóricos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Animais , Lógica Fuzzy , Modelos Lineares , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Virulência
9.
Artigo em Inglês | MEDLINE | ID: mdl-28377904

RESUMO

Johne's disease is a chronic granulomatous enteritis of ruminants caused by the intracellular bacterium Mycobacterium avium subsp. paratuberculosis (Map). We previously demonstrated that Map isolates from sheep persisted within host macrophages in lower CFUs than cattle isolates after 7 days of infection. In the current study, we hypothesize that these phenotypic differences between Map isolates may be driven be the fatty acids (FAs) present on the phosphadidyl-1-myo-inositol mannosides of the Map cell wall that mediate recognition by the mannose receptors of host macrophages. FAs modifications may influence Map's envelope fluidity ultimately affecting pathogenicity. To test this hypothesis, we investigated the responses of two Map isolates from cattle (K10 isolate) and sheep (2349/06-1) to the bovine and ovine macrophage environment by measuring the FAs content of extracellular and intracellular bacteria. For this purpose, macrophages cell lines of bovine (BOMAC) and ovine (MOCL-4) origin were infected with the two isolates of Map for 4 days at 37°C. The relative FAs composition of the two isolates recovered from infected BOMAC and MOCL-4 cells was determined by gas chromatography and compared with that of extracellular bacteria and that of bacteria grown in Middlebrook 7H9 medium. Using this approach, we demonstrated that the FAs composition of extracellular and 7H9-grown bacteria was highly conserved within each Map isolate, and statistically different from that of intracellular bacteria. Analysis of FAs composition from extracellular bacteria enabled the distinction of the two Map strains based on the presence of the tuberculostearic acid (18:0 10Me) exclusively in the K10 strain of Map. In addition, significant differences in the content of Palmitic acid and cis-7 Palmitoleic acid between both isolates harvested from the extracellular environment were observed. Once the infection established itself in BOMAC and MOCL-4 cells, the FAs profiles of both Map isolates appeared conserved. Our results suggest that the FAs composition of Map might influence its recognition by macrophages and influence the survival of the bacillus within host macrophages.


Assuntos
Parede Celular/química , Ácidos Graxos/análise , Macrófagos/microbiologia , Mycobacterium avium subsp. paratuberculosis/química , Animais , Bovinos , Linhagem Celular , Cromatografia Gasosa , Interações Hospedeiro-Patógeno , Viabilidade Microbiana , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Ovinos
10.
PLoS One ; 11(11): e0165607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820836

RESUMO

Innate immunity is evolutionarily conserved in multicellular organisms and was considered to lack memory until very recently. One of its more characteristic mechanisms is phagocytosis, the ability of cells to engulf, process and eventually destroy any injuring agent. We report the results of an ex vivo experiment in bovine macrophages in which improved clearance of Mycobacterium bovis (M. bovis) was induced by pre-exposure to a heat killed M. bovis preparation. The effects were independent of humoral and cellular adaptive immune responses and lasted up to six months. Specifically, our results demonstrate the existence of a training effect in the lytic phase of phagocytosis that can be activated by killed mycobacteria, thus suggesting a new mechanism of vaccine protection. These findings are compatible with the recently proposed concept of trained immunity, which was developed to explain the observation that innate immune responses provide unspecific protection against pathogens including other than those that originally triggered the immune response.


Assuntos
Macrófagos/imunologia , Macrófagos/microbiologia , Viabilidade Microbiana , Mycobacterium bovis/fisiologia , Fagocitose , Animais , Bovinos , Citocinas/metabolismo , Temperatura Alta , Imunidade Celular , Imunidade Humoral , Macrófagos/citologia , Macrófagos/metabolismo , Viabilidade Microbiana/efeitos da radiação , Monócitos/citologia , Mycobacterium bovis/efeitos da radiação
11.
PLoS One ; 9(8): e104238, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111300

RESUMO

The analysis of the early macrophage responses, including bacterial growth within macrophages, represents a powerful tool to characterize the virulence of clinical isolates of Mycobcaterium avium susbp. paratuberculosis (Map). The present study represents the first assessment of the intracellular behaviour in ovine monocyte-derived macrophages (MDMs) of Map isolates representing distinct genotypes (C, S and B), and isolated from cattle, sheep, goat, fallow deer, deer, and wild boar. Intracellular growth and survival of the selected isolates in ovine MDMs was assessed by quantification of CFUs inside of the host cells at 2 h p.i. (day 0) and 7 d p. i. using an automatic liquid culture system (Bactec MGIT 960). Variations in bacterial counts over 7 days from the baseline were small, in a range between 1.63 to 1.05-fold. After 7 d of infection, variations in the estimated log10 CFUs between all the tested isolates were not statistically significant. In addition, ovine MDMs exhibited enhanced anti-inflammatory, antiapoptotic and antidestructive responses when infected with two ovine isolates of distinct genotype (C and S) or with two C-type isolates from distinct hosts (cattle and sheep); which correlated with the successful survival of these isolates within ovine MDMs. A second objective was to study, based on an in vitro granuloma model, latter stages of the infection by investigating the capacity of two Map isolates from cattle and sheep to trigger formation of microgranulomas. Upon 10 d p.i., both Map isolates were able to induce the formation of granulomas comparable to the granulomas observed in clinical specimens with respect to the cellular components involved. In summary, our results demonstrated that Map isolates from cattle, sheep, goats, deer, fallow-deer and wild boar were able not only to initiate but also to establish a successful infection in ovine macrophages regardless of genotype.


Assuntos
Apoptose , Granuloma/microbiologia , Macrófagos/citologia , Viabilidade Microbiana , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Mycobacterium avium subsp. paratuberculosis/fisiologia , Fenótipo , Animais , Bovinos , Regulação da Expressão Gênica , Genótipo , Granuloma/imunologia , Especificidade de Hospedeiro , Inflamação/metabolismo , Inflamação/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Ovinos/microbiologia
12.
Biomed Res Int ; 2014: 623856, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967387

RESUMO

Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium avium subsp. paratuberculosis can survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Several in vivo models have been used to study granuloma's structure and function, but recently developed in vitro models of granuloma show potential for closer observation of the early stages of host's responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas' cytokine production, and cell surface antigens. A reliable in vitro dormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases.


Assuntos
Granuloma/imunologia , Granuloma/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Infecções por Mycobacterium/imunologia , Mycobacterium/fisiologia , Animais , Granuloma/patologia , Humanos , Modelos Biológicos , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/patologia
13.
Biomed Res Int ; 2013: 908348, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509800

RESUMO

Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of a chronic intestinal inflammation in ruminants named Johne's disease or paratuberculosis and a possible etiopathological agent of human Crohn's disease (CD). Analysis of macrophage transcriptomes in response to Map infection is expected to provide key missing information in the understanding of the role of this pathogen in establishing an inappropriate and persistent infection in a susceptible host and of the molecular mechanisms that might underlie the early phases of CD. In this paper we summarize transcriptomic studies of human and bovine peripheral blood mononuclear cells (PBMC), monocyte-derived macrophages (MDMs), and macrophages-like cell lines in vitro infected with Map. Most studies included in this paper consistently reported common gene expression signatures of bovine and human macrophages in response to Map such as enhanced expression of the anti-inflammatory cytokines IL-10 and IL-6, which promote bacterial survival. Overexpression of IL-10 could be responsible for the Map-associated reduction in the expression of the proapoptotic TNF-α gene observed in bovine and human macrophages.


Assuntos
Apoptose , Inflamação/imunologia , Macrófagos/imunologia , Mycobacterium avium subsp. paratuberculosis , Animais , Bovinos , Citocinas/imunologia , Suscetibilidade a Doenças , Humanos , Leucócitos Mononucleares/imunologia , Especificidade da Espécie
14.
Vet Microbiol ; 163(3-4): 325-34, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23415474

RESUMO

Assessment of the virulence of isolates of Mycobacterium avium subsp. paratuberculosis (Map) exhibiting distinct genotypes and isolated from different hosts may help to clarify the degree to which clinical manifestations of the disease in cattle can be attributed to bacterial or to host factors. The objective of this study was to test the ability of 10 isolates of Map representing distinct genotypes and isolated from domestic (cattle, sheep, and goat), and wildlife animal species (fallow deer, deer, wild boar, and bison) to enter and grow in bovine macrophages. The isolates were previously typed using IS1311 PCR followed by restriction endonuclease analysis into types C, S or B. Intracellular growth of the isolates in a bovine macrophage-like cell line (BoMac) and in primary bovine monocyte-derived macrophages (MDM) was evaluated by quantification of CFU numbers in the initial inoculum and inside of the host cells at 2h and 7 d p.i. using an automatic liquid culture system (Bactec MGIT 960). Individual data illustrated that growth was less variable in BoMac than in MDM cells. All the isolates from goat and sheep hosts persisted within BoMac cells in lower CFU numbers than the other tested isolates after 7 days of infection regardless of genotype. In addition, BoMac cells exhibited differential inflammatory, apoptotic and destructive responses when infected with a bovine or an ovine isolate; which correlated with the differential survival of these strains within BoMac cells. Our results indicated that the survival of the tested Map isolates within bovine macrophages is associated with the specific host from which the isolates were initially isolated.


Assuntos
Macrófagos/microbiologia , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Paratuberculose/microbiologia , Animais , Bison , Bovinos , Cervos , Regulação da Expressão Gênica , Genótipo , Cabras , Interações Hospedeiro-Patógeno , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/genética , Reação em Cadeia da Polimerase , Ovinos , Especificidade da Espécie , Sus scrofa
15.
Innate Immun ; 16(4): 235-47, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19710090

RESUMO

Mycobacterium avium subsp. paratuberculosis adapts to the environment via the regulation of genes affecting its envelope's composition. Bacteria grown in milk (in vivo conditions) presented differences in the cell wall-associated lipids and in the expression of genes involved in lipid metabolism (FadE8, FadE6 and MAP1420) and host cell invasion (MAP1203, LprL). A different lipid profile was also observed in the envelope of intracellular bacteria after 1 h of infection. Intracellular bacteria showed up-regulation of a LuxR regulator which controls the envelope's composition by up-regulation of FadE8, MAP1420, MAP1203 and LprL and by down-regulation of pks12, mmpL2 and MAP2594. A LuxR-overexpressing strain with a lipid-deficient envelope phenotype, infected epithelial cells more efficiently than the wild-type bacteria; however, it was not more resistant than the wild-type strain to the action of bactericidal proteins. Here we show that LuxR regulates virulence determinants and is involved in mycobacteria adaptation to the host.


Assuntos
Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transativadores/genética , Transativadores/fisiologia , Animais , Antibacterianos/farmacologia , Bovinos , Linhagem Celular , Parede Celular/química , Meios de Cultura , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipídeos/química , Análise em Microsséries , Leite/microbiologia , Mycobacterium avium subsp. paratuberculosis/efeitos dos fármacos , Peptídeos/farmacologia , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcrição Gênica , Virulência
16.
Foodborne Pathog Dis ; 6(4): 513-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19415976

RESUMO

Johne's disease or paratuberculosis is a chronic granulomatous inflammation of the small intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Recent studies suggest an association between MAP and Crohn's disease in humans. MAP can become widely distributed within the tissues of infected animals, and meat may be a possible route of exposure of MAP to humans. In this study, 47 dairy and beef cattle were examined for the occurrence of viable MAP in diaphragm muscle. At the slaughterhouse, gut tissues, diaphragm muscle, blood, and feces of the 47 animals were collected for bacteriological culture, as well as gut samples for histopathological analysis. MAP was detected by bacteriological culture and conventional and real-time IS900 polymerase chain reaction in the diaphragm muscle of six infected cattle at slaughter (13%). The six animals showing evidence of MAP in diaphragm muscle had diffuse lesions and severe granulomatous inflammation in ileocecal lymph nodes, jejunal lymph nodes, ileocecal valve, and ileum. All six had heavy bacterial load in mesenteric lymph nodes, ileocecal valve, ileum, and jejunum, and four showed clinical signs of paratuberculosis. Two animals did not show clinical signs but had viable MAP in intestinal tissues and in diaphragm muscle as well. MAP was found in blood of only one of the six animals showing evidence of MAP in diaphragm muscle and in feces of three of them. In general, there was a positive association between enteric lesion severity, clinical signs of paratuberculosis, heavy bacterial load in intestinal tissues, fecal shedding of MAP, and the presence of disseminated MAP infection in diaphragm muscle. The results of this study demonstrated that MAP can be detected and cultured from muscle of MAP-infected cattle destined for human consumption and suggest a possible risk of exposure of humans to MAP via contaminated meat.


Assuntos
Contaminação de Alimentos/análise , Carne/microbiologia , Músculo Esquelético/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/transmissão , Animais , Bacteriemia/veterinária , Bovinos , Qualidade de Produtos para o Consumidor , Doença de Crohn/microbiologia , Fezes/microbiologia , Feminino , Humanos , Masculino , Medição de Risco , Zoonoses
17.
Infect Immun ; 76(1): 170-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17938223

RESUMO

Mycobacterium avium subsp. paratuberculosis infection of cattle takes place through the intestinal mucosa. To identify M. avium subsp. paratuberculosis genes associated with the invasion of bovine epithelial cells in vitro, we screened a library of transposon mutants. Several mutants of M. avium subsp. paratuberculosis were identified which invaded Madin-Darby bovine kidney (MDBK) epithelial cells less efficiently than wild-type (wt) M. avium subsp. paratuberculosis. The deltaOx mutant had the transposon located in the MAP3464 gene, a putative oxidoreductase gene whose expression is upregulated upon bacterial contact with MDBK cells. Complete restoration of invasion comparable to that for the wt bacterium was achieved by introducing a copy of the complete oxidoreductase operon into the deltaOx mutant. Immunoprecipitation and Western blot analysis indicated that wt M. avium subsp. paratuberculosis activates Cdc42 and RhoA pathways of internalization 15 and 60 min after infection of the host cell, respectively. The deltaOx mutant, however, failed to activate the Cdc42 pathway. To determine whether an M. avium subsp. paratuberculosis protein delivered to the host cell mediates the entry of the wt bacterium by activation of the Cdc42 pathway, affinity precipitation of active Cdc42 from MDBK-infected cells followed by mass spectrometry was carried out. We identified a 17-amino-acid bacterial peptide associated with the Cdc42 of cells infected with wt M. avium subsp. paratuberculosis but not with the deltaOx mutant. The sequence of the peptide matches MAP3985c, a hypothetical protein, possibly functioning as a putative Cdc42 effector. These findings reveal a novel signaling pathway activated during M. avium subsp. paratuberculosis entry that links the product of MAP3464 gene to activation of Cdc42 in the host cell.


Assuntos
Células Epiteliais/microbiologia , Mycobacterium avium subsp. paratuberculosis/enzimologia , Mycobacterium avium subsp. paratuberculosis/genética , Oxirredutases/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Bovinos , Linhagem Celular , Ativação Enzimática , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Oxirredutases/metabolismo , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA