Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 178: 117153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024833

RESUMO

Infectious diseases are a major threat to global health and cause millions of deaths every year, particularly in developing countries. The emergence of multidrug resistance challenges current antimicrobial treatments, inducing uncertainty in therapeutic protocols. New compounds are therefore necessary. A drug repurposing approach could play a critical role in developing new treatments used either alone or in combination with standard therapy regimens. Herein, we focused on cysteamine, an aminothiol endogenously synthesized by human cells during the degradation of coenzyme-A, which is a drug approved for the treatment of nephropathic cystinosis. Cysteamine influences many biological processes due to the presence of the highly reactive thiol group. This review provides an overview of cysteamine-mediated effects on different viruses, bacteria and parasites, with a particular focus on infections caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacterium tuberculosis, non-tuberculous mycobacteria (NTM), and Pseudomonas aeruginosa. Evidences for a potential use of cysteamine as a direct antimicrobial agent and/or a host-directed therapy, either alone or in combination with other antimicrobial drugs, are described.


Assuntos
Anti-Infecciosos , Cisteamina , Humanos , Cisteamina/farmacologia , Cisteamina/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Animais , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/microbiologia , Reposicionamento de Medicamentos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , COVID-19 , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos
2.
Front Immunol ; 14: 1146704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292210

RESUMO

Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.


Assuntos
COVID-19 , Infecções por HIV , Tuberculose , Humanos , Idoso , Inflamação , Envelhecimento
3.
Front Cell Infect Microbiol ; 13: 1257683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162580

RESUMO

Background: Despite the significant progress achieved in understanding the pathology and clinical management of SARS-CoV-2 infection, still pathogenic and clinical issues need to be clarified. Treatment with modulators of epigenetic targets, i.e., epidrugs, is a current therapeutic option in several cancers and could represent an approach in the therapy of viral diseases. Results: Aim of this study was the analysis of the role of histone deacetylase (HDAC) inhibition in the modulation of SARS-CoV-2 infection of mesothelial cells (MCs).MeT5A cells, a pleura MC line, were pre-treated with different specific class I and IIb HDAC inhibitors. Unexpectedly, treatment with HDAC1-3 inhibitors significantly increased ACE2/TMPRSS2 expression, suggesting a role in favoring SARS-CoV-2 infection. We focused our analysis on the most potent ACE2/TMPRSS2 inducer among the inhibitors analysed, MS-275, a HDAC1-3 inhibitor. ACE2/TMPRSS2 expression was validated by Western Blot (WB) and immunofluorescence. The involvement of HDAC inhibition in receptor induction was confirmed by HDAC1/HDAC2 silencing. In accordance to the ACE2/TMPRSS2 expression data, MS-275 increased SARS-CoV-2 replication and virus propagation in Vero E6 cells.Notably, MS-275 was able to increase ACE2/TMPRSS2 expression and SARS-CoV-2 production, although to a lesser extent, also in the lung adenocarcinoma cell line Calu-3 cells.Mechanistically, treatment with MS-275 increased H3 and H4 histone acetylation at ACE2/TMPRSS2 promoters, increasing their transcription. Conclusion: This study highlights a previously unrecognized effect of HDAC1-3 inhibition in increasing SARS-CoV-2 cell entry, replication and productive infection correlating with increased expression of ACE2 and TMPRSS2. These data, while adding basic insight into COVID-19 pathogenesis, warn for the use of HDAC inhibitors in SARS-CoV-2 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Pulmão/metabolismo , Células Epiteliais , Histona Desacetilase 1/metabolismo
4.
Cell Death Discov ; 8(1): 491, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522315

RESUMO

The effects of indole-3-carbinol (I3C) compound have been described deeply as antitumor drug in multiple cancers. Herein, I3C compound was tested for toxicity and antiviral activity against SARS-CoV-2 infection. Antiviral activity was assessed in vitro in both in VeroE6 cell line and human Lung Organoids (hLORGs) where I3C exhibited a direct anti-SARS-CoV-2 replication activity with an antiviral effect and a modulation of the expression of genes implicated in innate immunity and inflammatory response was observed at 16.67 µM. Importantly, we further show the I3C is also effective against the SARS-CoV-2 Omicron variant. In mouse model, instead, we assessed possible toxicity effects of I3C through two different routes of administration: intragastrically (i.g.) and intraperitoneally (i.p.). The LD50 (lethal dose 50%) values in mice were estimated to be: 1410 and 1759 mg/kg i.g.; while estimated values for i.p. administration were: 444.5 mg/kg and 375 mg/kg in male and female mice, respectively. Below these values, I3C (in particular at 550 mg/kg for i.g. and 250 mg/kg for i.p.) induces neither death, nor abnormal toxic symptoms as well as no histopathological lesions of the tissues analysed. These tolerated doses are much higher than those already proven effective in pre-clinical cancer models and in vitro experiments. In conclusion, I3C exhibits a significant antiviral activity, and no toxicity effects were recorded for this compound at the indicated doses, characterizing it as a safe and potential antiviral compound. The results presented in this study could provide experimental pre-clinical data necessary for the start of human clinical trials with I3C for the treatment of SARS-CoV-2 and beyond.

5.
Front Immunol ; 13: 984098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148228

RESUMO

Objective: Several therapies with immune-modulatory functions have been proposed to reduce the overwhelmed inflammation associated with COVID-19. Here we investigated the impact of IL-10 in COVID-19, through the ex-vivo assessment of the effects of exogenous IL-10 on SARS-CoV-2-specific-response using a whole-blood platform. Methods: Two cohorts were evaluated: in "study population A", plasma levels of 27 immune factors were measured by a multiplex (Luminex) assay in 39 hospitalized "COVID-19 patients" and 29 "NO COVID-19 controls" all unvaccinated. In "study population B", 29 COVID-19 patients and 30 NO COVID-19-Vaccinated Controls (NO COVID-19-VCs) were prospectively enrolled for the IL-10 study. Whole-blood was stimulated overnight with SARS-COV-2 antigens and then treated with IL-10. Plasma was collected and used for ELISA and multiplex assay. In parallel, whole-blood was stimulated and used for flow cytometry analysis. Results: Baseline levels of several immune factors, including IL-10, were significantly elevated in COVID-19 patients compared with NO COVID-19 subjects in "study population A". Among them, IL-2, FGF, IFN-γ, and MCP-1 reached their highest levels within the second week of infection and then decreased. To note that, MCP-1 levels remained significantly elevated compared with controls. IL-10, GM-CSF, and IL-6 increased later and showed an increasing trend over time. Moreover, exogenous addition of IL-10 significantly downregulated IFN-γ response and several other immune factors in both COVID-19 patients and NO COVID-19-VCs evaluated by ELISA and a multiplex analysis (Luminex) in "study population B". Importantly, IL-10 did not affect cell survival, but decreased the frequencies of T-cells producing IFN-γ, TNF-α, and IL-2 (p<0.05) and down-modulated HLA-DR expression on CD8+ and NK cells. Conclusion: This study provides important insights into immune modulating effects of IL-10 in COVID-19 and may provide valuable information regarding the further in vivo investigations.


Assuntos
COVID-19 , Interleucina-10 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Antígenos HLA-DR/análise , Humanos , Interleucina-2 , Interleucina-6 , SARS-CoV-2 , Fator de Necrose Tumoral alfa
6.
Cell Death Discov ; 8(1): 288, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705564

RESUMO

The novel SARS-CoV-2 variants of concern (VOC) represent a considerable global alarm because their mutations are known to affect transmissibility and cause immune escape. While preventing severe disease and deaths, the available vaccines do not avoid infection; therefore, COVID-19 disease management still requires effective therapies. We have recently reported that the aminothiol cysteamine, a drug already applied to humans, exerts direct antiviral activity against SARS-CoV-2 and has in vitro immunomodulatory effect. To evaluate whether this compound exerts antiviral effects also against SARS-CoV-2 variants, we performed different infected cell-based assays using Wild type, Delta, or Omicron VOC. We found that cysteamine significantly reduces the cytopathic effect induced by SARS-CoV-2 Wild type strain and Delta variant in Vero E6 cells. On the other hand, cysteamine had no effects on the survival of cells infected with the Omicron variant, due to the lack of cytotoxicity on Vero E6 cells, at least when infected at MOI = 0.001 for 72 h. Moreover, cysteamine significantly reduced the production of Wild type, Delta, and Omicron variants as measured by the virus released in the culture media (Vero E6 and Calu-3 cells) and by transmission electron microscopy analysis (Vero E6 cells). Notably, cysteamine is more effective in inhibiting the Omicron rather than Delta or Wild type viruses, with an 80% inhibition of Omicron production compared to 40% of Wild type and Delta variant. Overall, our findings demonstrate that cysteamine exerts direct antiviral actions against SARS-CoV-2 Delta and Omicron variants, in addition to the Wild type virus. Our data further demonstrate that cysteamine is a good candidate as repurposing drug for the treatment of SARS-CoV-2 infection for the present and, likely, the future VOC and, therefore, it would be important to investigate its clinical relevance in randomized clinical trials.

7.
Theranostics ; 12(6): 2948-2962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401822

RESUMO

Rationale: Circulating pathogen-derived proteins can serve as useful biomarkers for infections but may be detected with poor sensitivity and specificity by standard immunoassays due to masking effects and cross-reactivity. Mass spectrometry (MS)-read immunoassays for biomarker-derived peptides can resolve these issues, but lack standard workflows to select species-specific peptides with strong MS signal that are suitable for antibody generation. Methods:Using a Mycobacterium tuberculosis (Mtb) protein as an example, candidate peptides were selected by length, species-specificity, MS intensity, and antigenicity score. MS data from spiked healthy serum was employed to define MS feature thresholds, including a novel measure of internal MS data correlation, to produce a peak detection algorithm. Results: This algorithm performed better in rejecting false positive signal than each of its criteria, including those currently employed for this purpose. Analysis of an Mtb peptide biomarker (CFP-10pep) by this approach identified tuberculosis cases not detected by microbiologic assays, including extrapulmonary tuberculosis and tuberculosis cases in children infected with HIV-1. Circulating CFP-10pep levels measured in a non-human primate model of tuberculosis distinguished disease from asymptomatic infection and tended to correspond with Mtb granuloma size, suggesting that it could also serve as a surrogate marker for Mtb burden and possibly treatment response. Conclusions: These biomarker selection and analysis approach appears to have strong potential utility for infectious disease diagnosis, including cryptic infections, and possibly to monitor changes in Mtb burden that may reflect disease progression or a response to treatment, which are critical needs for more effective disease control.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Biomarcadores , Peptídeos , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia
8.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011614

RESUMO

The ongoing pandemic of coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), needs better treatment options both at antiviral and anti-inflammatory levels. It has been demonstrated that the aminothiol cysteamine, an already human applied drug, and its disulfide product of oxidation, cystamine, have anti-infective properties targeting viruses, bacteria, and parasites. To determine whether these compounds exert antiviral effects against SARS-CoV-2, we used different in vitro viral infected cell-based assays. Moreover, since cysteamine has also immune-modulatory activity, we investigated its ability to modulate SARS-CoV-2-specific immune response in vitro in blood samples from COVID-19 patients. We found that cysteamine and cystamine decreased SARS-CoV-2-induced cytopathic effects (CPE) in Vero E6 cells. Interestingly, the antiviral action was independent of the treatment time respect to SARS-CoV-2 infection. Moreover, cysteamine and cystamine significantly decreased viral production in Vero E6 and Calu-3 cells. Finally, cysteamine and cystamine have an anti-inflammatory effect, as they significantly decrease the SARS-CoV-2 specific IFN-γ production in vitro in blood samples from COVID-19 patients. Overall, our findings suggest that cysteamine and cystamine exert direct antiviral actions against SARS-CoV-2 and have in vitro immunomodulatory effects, thus providing a rational to test these compounds as a novel therapy for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Cisteamina/farmacologia , Reposicionamento de Medicamentos/métodos , Agentes de Imunomodulação/farmacologia , SARS-CoV-2/efeitos dos fármacos , Idoso , Animais , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Cistamina/farmacologia , Eliminadores de Cistina/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
Clin Microbiol Infect ; 27(2): 286.e7-286.e13, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33045370

RESUMO

OBJECTIVES: To examine whether specific T-cell-responses to SARS-CoV-2 peptides can be detected in COVID-19 using a whole-blood experimental setting, which may be further explored as a potential diagnostic tool. METHODS: We evaluated interferon (IFN)-γ levels after stimulating whole-blood with spike and remainder-antigens peptides megapools (MP) derived from SARS-CoV-2 sequences; interleukin (IL)-1ß, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, eotaxin, basic fibroblast growth factor (FGF), granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ, Interferon gamma-induced protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1α, MIP-1ß, Platelet-derived growth factor (PDGF), RANTES (regulated on activation, normal T cell expressed and secreted), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF) were also evaluated. RESULTS: IFN-γ-response to spike and remainder-antigens MPs was significantly increased in 35 COVID-19 patients compared with 29 'no COVID-19' individuals (medians spike-MP: 0.26 vs 0, p = 0.0002; medians remainder-antigens-MP: 0.07 vs 0.02; p = 0.02). This response was detected independently of patients' clinical parameters. IFN-γ-response to SARS-CoV-2-unrelated antigens cytomegalovirus (CMV) and Staphylococcal Enterotoxin B (SEB) was similar in COVID-19 compared with 'no COVID-19' individuals (median CMV: 3.46 vs 5.28, p = 0.16; median SEB: 12.68 vs 15.05; p = 0.1). In response to spike-MPs in COVID-19- compared with 'no COVID-19' -individuals, we found significant higher median of IL-2 (50.08 vs 0, p = 0.0018), IFN-γ (90.16 vs 0, p = 0.01), IL-4 (0.52 vs 0, p = 0.03), IL-13 (0.84 vs 0, p = 0.007) and MCP-1 (4602 vs 359.2, p = 0.05). CONCLUSIONS: Immune response to SARS-CoV-2 peptides in a whole-blood assay is associated with COVID-19 and it is characterized by both Th1 and Th2 profile. This experimental approach may be useful for developing new T-cell based diagnostic tests for disease and vaccine settings.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Antígenos Virais/imunologia , COVID-19/sangue , Citocinas/sangue , Citocinas/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/sangue , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Células Th1/imunologia , Células Th2/imunologia
10.
Eur J Histochem ; 63(2)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243942

RESUMO

The limited availability of rapid and reliable flow cytometry-based assays for ex vivo quantification of autophagy has hampered their clinical applications for studies of diseases pathogenesis or for the implementation of autophagy-targeting therapies. To this aim, we modified and improved the protocol of a commercial kit developed for quantifying the microtubule-associated protein 1A/1B light chain 3B (LC3), the most reliable marker for autophagosomes currently available. The protocol modifications were set up measuring the autophagic flux in neoplastic (THP-1 cells) and primary cells (peripheral blood mononuclear cells; PBMC) of healthy donors. Moreover, PBMC of active tuberculosis (TB) patients were stimulated with the Mycobacterium tuberculosis purified protein derivatives or infected with live Mycobacterium bovis bacillus Calmette-Guerin (BCG). We found that the baseline median fluorescent intensity (MFI) of THP-1 cells changed depending on the time of sample acquisition to the flow cytometer. To solve this problem, a fixation step was introduced in different stages of the assay's protocol, obtaining more reproducible and sensitive results when a post-LC3 staining fixation was performed, in either THP1 or PBMC. Furthermore, since we found that results are influenced by the type and the dose of the lysosome inhibitor used, the best dose of Chloroquine for LC3 accumulation were set up in either THP-1 cells or PBMC. Finally, applying these experimental settings, we measured the autophagic flux in CD14+ cells from active TB patients' PBMC upon BCG infection. In conclusion, our data indicate that the protocol modifications here described in this work improve the stability and accuracy of a flow cytometry-based assay for the evaluation of autophagy, thus assuring more standardised cell analyses.


Assuntos
Autofagia , Citometria de Fluxo/métodos , Proteínas Associadas aos Microtúbulos/análise , Autofagia/efeitos dos fármacos , Proteínas de Bactérias/farmacologia , Cloroquina/farmacologia , Fluorescência , Humanos , Leucócitos Mononucleares/microbiologia , Mycobacterium bovis/química , Coloração e Rotulagem , Células THP-1
11.
Hepatology ; 69(1): 34-50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070380

RESUMO

Hepatitis C virus (HCV) is highly efficient in establishing a chronic infection, having evolved multiple strategies to suppress the host antiviral responses. The HCV nonstructural 5A (NS5A) protein, in addition to its role in viral replication and assembly, has long been known to hamper the interferon (IFN) response. However, the mechanism of this inhibitory activity of NS5A remains partly characterized. In a functional proteomic screening carried out in HCV replicon cells, we identified the mitochondrial protein LRPPRC as an NS5A binding factor. Notably, we found that downregulation of LRPPRC expression results in a significant inhibition of HCV infection, which is associated with an increased activation of the IFN response. Moreover, we showed that LRPPRC acts as a negative regulator of the mitochondrial-mediated antiviral immunity, by interacting with mitochondrial antiviral signaling protein (MAVS) and inhibiting its association with TRAF3 and TRAF6. Finally, we demonstrated that NS5A is able to interfere with MAVS activity in a LRPPRC-dependent manner. Conclusion: Overall, our results indicate that NS5A contributes to the inhibition of innate immune pathways during HCV infection by exploiting the ability of LRPPRC to inhibit MAVS-regulated antiviral signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Hepatite C Crônica/virologia , Proteínas Mitocondriais/fisiologia , Proteínas de Neoplasias/fisiologia , Células Cultivadas , Hepacivirus/fisiologia , Humanos , Transdução de Sinais , Proteínas não Estruturais Virais/fisiologia
12.
Oncotarget ; 8(2): 2628-2646, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27793050

RESUMO

Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y-dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Lamina Tipo A/metabolismo , Complexos Multiproteicos/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Elementos de Resposta
13.
World J Gastroenterol ; 22(6): 1953-65, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26877603

RESUMO

Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.


Assuntos
Hepacivirus/crescimento & desenvolvimento , Hepacivirus/metabolismo , Hepatite C/metabolismo , Lipoproteínas/metabolismo , Fígado/metabolismo , Animais , Hepatite C/diagnóstico , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Estágios do Ciclo de Vida , Fígado/virologia , Transdução de Sinais , Vírion/metabolismo , Internalização do Vírus , Replicação Viral
14.
Liver Int ; 35(2): 302-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24766136

RESUMO

The complex spatial and paracrine relationships between the various liver histotypes are essential for proper functioning of the hepatic parenchymal cells. Only within a correct tissue organization, in fact, they stably maintain their identity and differentiated phenotype. The loss of histotype identity, which invariably occurs in the primary hepatocytes in culture, or in vivo in particular pathological conditions (fibrosis and tumours), is mainly because of the phenomenon of epithelial-to-mesenchymal transition (EMT). The EMT process, that occurs in the many epithelial cells, appears to be driven by a number of general, non-tissue-specific, master transcriptional regulators. The reverse process, the mesenchymal-to-epithelial transition (MET), as yet much less characterized at a molecular level, restores specific epithelial identities, and thus must include tissue-specific master elements. In this review, we will summarize the so far unveiled events of EMT/MET occurring in liver cells. In particular, we will focus on hepatocyte and describe the pivotal role in the control of EMT/MET dynamics exerted by a tissue-specific molecular mini-circuitry. Recent evidence, indeed, highlighted as two transcriptional factors, the master gene of EMT Snail, and the master gene of hepatocyte differentiation HNF4α, exhorting a direct reciprocal repression, act as pivotal elements in determining opposite cellular outcomes. The different balances between these two master regulators, further integrated by specific microRNAs, in fact, were found responsible for the EMT/METs dynamics as well as for the preservation of both hepatocyte and stem/precursor cells identity and differentiation. Overall, these findings impact the maintenance of stem cells and differentiated cells both in in vivo EMT/MET physio-pathological processes as well as in culture.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica/fisiologia , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Modelos Biológicos , Fenótipo , Fatores de Transcrição/metabolismo , Fator 4 Nuclear de Hepatócito/uso terapêutico , Hepatócitos/fisiologia , Humanos , MicroRNAs/metabolismo , Fatores de Transcrição da Família Snail
15.
Proteomics ; 14(9): 1107-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24616218

RESUMO

Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload.


Assuntos
Biomarcadores/metabolismo , Hepatite C/metabolismo , Sobrecarga de Ferro/metabolismo , Cirrose Hepática/metabolismo , Vitronectina/metabolismo , Biomarcadores/análise , Linhagem Celular , Humanos , Marcação por Isótopo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteômica , Regulação para Cima , Vitronectina/análise
16.
J Hepatol ; 58(1): 65-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960426

RESUMO

BACKGROUND & AIMS: The tumor fate derives from cell autonomous properties and niche microenvironmental cues. The transforming growth factor ß (TGFß) is a major microenvironmental factor for hepatocellular carcinoma (HCC) influencing tumor dedifferentiation, induction of epithelial-to-mesenchymal transition (EMT) and acquisition of metastatic properties. The loss of the transcriptional factor HNF4α is a predominant mechanism through which HCCs progress to a more aggressive phenotype; its re-expression, reducing tumor formation and repressing EMT program, has been suggested as a therapeutic tool for HCC gene therapy. We investigated the influence of TGFß on the anti-EMT and tumor suppressor HNF4α activity. METHODS: Cell motility and invasion were analyzed by wound healing and invasion assays. EMT was evaluated by RT-qPCR and immunofluorescence. ChIP and EMSA assays were utilized for investigation of the HNF4α DNA binding activity. HNF4α post-translational modifications (PTMs) were assessed by 2-DE analysis. GSK3ß activity was modulated by chemical inhibition and constitutive active mutant expression. RESULTS: We demonstrated that the presence of TGFß impairs the efficiency of HNF4α as tumor suppressor. We found that TGFß induces HNF4α PTMs that correlate with the early loss of HNF4α DNA binding activity on target gene promoters. Furthermore, we identified the GSK3ß kinase as one of the TGFß targets mediating HNF4α functional inactivation: GSK3ß chemical inhibition results in HNF4α DNA binding impairment while a constitutively active GSK3ß mutant impairs the TGFß-induced inhibitory effect on HNF4α tumor suppressor activity. CONCLUSIONS: Our data identify in the dominance of TGFß a limit for the HNF4α-mediated gene therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Terapia Genética , Quinase 3 da Glicogênio Sintase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Neoplasias Hepáticas , Fator de Crescimento Transformador beta/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Carcinoma Hepatocelular/terapia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Genes Supressores de Tumor/fisiologia , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
17.
J Proteome Res ; 11(5): 2786-97, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22443280

RESUMO

Hepatic fat export occurs by apolipoprotein B-100-containing lipoprotein production, whereas impaired production leads to liver steatosis. Hepatitis C virus (HCV) infection is associated to dysregulation of apoB-100 secretion and steatosis; however, the molecular mechanism by which HCV affects the apoB-100 secretion is not understood. Here, combining quantitative proteomics and computational biology, we propose ferritin heavy chain (Fth) as being the cellular determinant of apoB-100 production inhibition. By means of molecular analyses, we found that HCV nonstructural proteins and NS5A appear to be sufficient for inducing Fth up-regulation. Fth in turn was found to inhibit apoB-100 secretion leading to increased intracellular degradation via proteasome. Notably, intracellular Fth down-regulation by siRNA restores apoB-100 secretion. The inverse correlation between ferritin and plasma apoB-100 concentrations was also found in JFH-1 HCV cell culture systems (HCVcc) and HCV-infected patients. Finally, Fth expression was found to be required for robust HCV infection. These observations provide a further molecular explanation for the onset of liver steatosis and allow for hypothesizing on new therapeutic and antiviral strategies.


Assuntos
Apoferritinas/metabolismo , Apolipoproteína B-100/antagonistas & inibidores , Regulação Viral da Expressão Gênica , Hepacivirus/patogenicidade , Apolipoproteína B-100/sangue , Linhagem Celular Tumoral , Biologia Computacional , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/virologia , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Marcação por Isótopo , Complexo de Endopeptidases do Proteassoma/metabolismo , Mapas de Interação de Proteínas , Proteólise , Proteômica/métodos , Transfecção , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
18.
Gastroenterology ; 142(3): 644-653.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155365

RESUMO

BACKGROUND & AIMS: Autophagy is a lysosome-mediated catabolic process that mediates degradation and recycling of all major components of eukaryotic cells. Different stresses, including viral and bacterial infection, induce autophagy, which can promote cell survival by removing the stress inducer or by attenuating its dangerous effects. High levels of autophagy occur during infection of cells with hepatitis C virus (HCV), but the clinical relevance of this process is not clear. METHODS: Levels of autophagy were analyzed in liver biopsy samples from 22 patients with HCV infection using microtubule-associated protein-1 light chain 3 immunoblotting; associations with histological and metabolic parameters were evaluated by Pearson correlation analysis. We investigated the role of HCV-induced autophagy in lipid degradation in cells infected with the virus or replicons, and analyzed autophagosome contents by confocal microscopy and by measuring lipid levels after inhibition of autophagy by Beclin 1 knockdown or lysosome inhibitors. RESULTS: In liver biopsy samples from patients with HCV, there was an inverse correlation between microvesicular steatosis and level of autophagy (r = -0.617; P = .002). HCV selectively induced autophagy of lipids in virus-infected and replicon cells. In each system, autophagosomes frequently colocalized with lipid deposits, mainly formed by unesterified cholesterol. Inhibition of the autophagic process in these cells significantly increased the induction of cholesterol accumulation by HCV. CONCLUSIONS: Autophagy counteracts the alterations in lipid metabolism induced by HCV. Disruption of the autophagic process might contribute to development of steatosis in patients with HCV.


Assuntos
Autofagia , Colesterol/metabolismo , Fígado Gorduroso/prevenção & controle , Hepacivirus/patogenicidade , Hepatite C/complicações , Fígado/virologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Biópsia , Western Blotting , Linhagem Celular Tumoral , Colesterol/genética , Citoproteção , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/virologia , Hepatite C/diagnóstico , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Itália , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Replicon , Estudos Retrospectivos
19.
Hepatology ; 53(6): 2063-74, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21384409

RESUMO

UNLABELLED: The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4α recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4α depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4α. HNF4α, in cooperation with its target HNF1α, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4α-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. CONCLUSION: The pivotal role of HNF4α in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4α activator and repressor functions are necessary for the identity of hepatocytes.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/patologia , Fator 4 Nuclear de Hepatócito/fisiologia , Hepatócitos/patologia , Mesoderma/patologia , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 4 Nuclear de Hepatócito/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Modelos Animais , Fenótipo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia
20.
Proteomics ; 9(7): 1901-15, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19333994

RESUMO

The Gram-negative bacterium Pseudomonas aeruginosa is a main cause of infection in hospitalized, burned, immunocompromised, and cystic fibrosis patients. Many processes essential for P. aeruginosa pathogenesis, e.g., nutrient uptake, antibiotic resistance, and virulence, take place in the cell envelope and depend on components residing in the periplasmic space. Recent high-throughput studies focused on P. aeruginosa membrane compartments. However, the composition and dynamics of its periplasm remain largely uncharacterized. Here, we report a detailed description of the periplasmic proteome of the wild-type P. aeruginosa strain PAO1 by 2-DE and MALDI-TOF/TOF analysis. Three extraction methods were compared at proteome level in order to achieve the most reliable and comprehensive periplasmic protein map. A total of 495 spots representing 395 different proteins were identified. Most of the high intensity spots corresponded to periplasmic proteins, while cytoplasmic contaminants were mainly detected among faint spots. The majority of the identified periplasmic proteins is involved in transport, cell-envelope integrity, and protein folding control. Notably, more than 30% still has an unpredicted function. This work provides the first overview of the P. aeruginosa periplasm and offers the basis for future studies on periplasmic proteome changes occurring during P. aeruginosa adaptation to different environments and/or antibiotic treatments.


Assuntos
Proteínas de Bactérias/análise , Periplasma/química , Proteômica/métodos , Pseudomonas aeruginosa/metabolismo , Fracionamento Celular/métodos , Eletroforese em Gel Bidimensional , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA