Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 21(1): 119, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966693

RESUMO

INTRODUCTION: Mutations in GDAP1 (Ganglioside-induced differentiation-associated protein 1) gene are linked to Charcot-Marie-Tooth disease (CMT), a Heterogenous group of disorders with multiple phenotypes, characterized by peripheral nerve dysfunction that can lead to vocal cord paralysis and diaphragmatic dysfunction. MAIN BODY: All three affected children of this chosen family have manifested the same clinical symptoms with progressive weakness, mild sensory impairment, and absent tendon reflexes in their early years. Electrodiagnostic analysis displayed an axonal type of neuropathy in affected patients. Sequencing of the GDAP1 gene was requested for all members of the family. Diagnostic assessments included pulmonary and vocal cord function tests, as well as phrenic and peripheral nerve conduction studies. Pathogenicity of GDAP1 variant p.Pro419Leu with axonal CMT2 and autosomal recessive inheritance was confirmed via in silico analysis. Patients with GDAP1 mutations showed dysphonia, speech difficulties, and the characteristic symptoms of CMT. The severity of symptoms correlated with the presence of a type of GDAP1 mutation. Patients with normal vocal cords and pulmonary function exhibited milder symptoms compared to those with GDAP1 mutations. Our study provides clinical insights into the phenotypic effects of GDAP1 mutations in CMT patients. The findings highlight the adverse clinical course and severe disability associated with GDAP1 mutations, including weak limb and laryngeal muscles. CONCLUSION: Patients with GDAP1 mutations and autosomal recessive neuropathy present with dysphonia and require interventions such as surgery, braces, physical therapy, and exercise. Early diagnosis and comprehensive clinical evaluations are crucial for managing CMT patients with GDAP1 mutations.

2.
Appl Biochem Biotechnol ; 195(8): 5136-5157, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36847982

RESUMO

The aim of this research is to investigate the quantum geometric properties and chemical reactivity of atropine, a pharmaceutically active tropane alkaloid. Using density functional theory (DFT) computations with the B3LYP/SVP functional theory basis set, the most stable geometry of atropine was determined. Additionally, a variety of energetic molecular parameters were calculated, such as the optimized energy, atomic charges, dipole moment, frontier molecular orbital energies, HOMO-LUMO energy gap, molecular electrostatic potential, chemical reactivity descriptors, and molecular polarizability. To determine atropine's inhibitory potential, molecular docking was used to analyze ligand interactions within the active pockets of aldo-keto reductase (AKR1B1 and AKR1B10). The results of these studies showed that atropine has greater inhibitory action against AKR1B1 than AKR1B10, which was further validated through molecular dynamic simulations by analyzing root mean square deviation (RMSD) and root mean square fluctuations (RMSF). The results of the molecular docking simulation were supplemented with simulation data, and the ADMET characteristics were also determined to predict the drug likeness of a potential compound. In conclusion, the research suggests that atropine has potential as an inhibitor of AKR1B1 and could be used as a parent compound for the synthesis of more potent leads for the treatment of colon cancer associated with the sudden expression of AKR1B1.


Assuntos
Atropina , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Atropina/farmacologia , Aldo-Ceto Redutases
3.
Crit Rev Food Sci Nutr ; 63(28): 9482-9505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35475717

RESUMO

The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.


Assuntos
Antibacterianos , Polifenóis , Humanos , Polifenóis/farmacologia , Antibacterianos/farmacologia , Fenóis , Proteínas de Bactérias , Aderência Bacteriana
4.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234779

RESUMO

Chemotherapy is an aggressive form of chemical drug therapy aiming to destroy cancer cells. Adjuvant therapy may reduce hazards of chemotherapy and help in destroying these cells when obtained from natural products, such as medical plants. In this study, the potential therapeutic effect of Rosa damascena callus crude extract produced in vitamin-enhanced media is investigated on colorectal cancer cell line Caco-2. Two elicitors, i.e., L-ascorbic acid and citric acid at a concentration of 0.5 g/L were added to the callus induction medium. Callus extraction and the GC-MS analysis of methanolic crude extracts were also determined. Cytotoxicity, clonogenicity, proliferation and migration of Caco-2 colorectal cancer cells were investigated using MTT cytotoxicity, colony-forming, Ki-67 flow cytometry proliferation and Migration Scratch assays, respectively. Our results indicated that L-ascorbic acid treatment enhanced callus growth parameters and improved secondary metabolite contents. It showed the least IC50 value of 137 ug/mL compared to 237 ug/mL and 180 ug/mL in the citric acid-treated and control group. We can conclude that R. damascena callus elicited by L-ascorbic acid improved growth and secondary metabolite contents as well as having an efficient antiproliferative, anti-clonogenic and anti-migratory effect on Caco-2 cancer cells, thus, can be used as an adjuvant anti-cancer therapy.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Rosa , Adenocarcinoma/tratamento farmacológico , Ácido Ascórbico/farmacologia , Células CACO-2 , Ácido Cítrico , Neoplasias Colorretais/tratamento farmacológico , Humanos , Antígeno Ki-67 , Extratos Vegetais/química , Rosa/química , Vitaminas
5.
Front Genet ; 13: 953486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092875

RESUMO

Jatropha curcas is a tropical species that has been recognized as a promising biodiesel plant. During 2018-2021, researchers at Forest College and Research Institute, Mettupalayam, elicited information on Jatropha's biochemical characteristics, growth performance, variability, and association studies for biometric variables using five backcross (BC4F1) hybrid clones of Jatropha with a control variety TNMC 7. In terms of seed yield, two hybrid clones, CJH 13 (1,218.60 g) and CJH 12 (1,034.40 g), outperformed the other hybrid clones. The seed oil content was higher in CJH 5 (34.19%). The seed oil content had moderate PCV (16.49%) and GCV (16.39%) values, as well as high heritability (99%) and genetic advance (33.56%) as a percentage of the mean. The number of fruits per bunch (0.845 and 0.850) and the number of bunches per branch (0.771 and 0.788) had significant positive phenotypic and genotypic correlations with seed yield, respectively. The iodine numbers, cetane numbers, and saponification values of all hybrid clones were acceptable and satisfactory and were in good compliance with Indian and international biodiesel standards.

6.
Front Cell Dev Biol ; 10: 923503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990603

RESUMO

Papillary thyroid carcinoma (PTC) is the most prevalent endocrine malignancy with a steadily increasing global incidence in recent decades. The pathogenesis of PTC is poorly understood, and the present diagnostic protocols are deficient. Thus, identifying novel prognostic biomarkers to improve our understanding of the mechanisms of pathogenesis, diagnosis, and designing therapeutic strategies for PTC is crucial. In this study, we integrated 27 PTC transcriptomic datasets and identified overlapping differentially expressed genes (DEGs) and differentially expressed microRNAs, collectively known as thyroid tumor-enriched proteins (TTEPs), and TTEmiRs, respectively. Our integrated bioinformatics analysis revealed that TTEPs were associated with tumor stages, poor surgical outcomes, distant metastasis, and worse prognoses in PTC cohorts. In addition, TTEPs were found to be associated with tumor immune infiltrating cells and immunosuppressive phenotypes of PTC. Enrichment analysis suggested the association of TTEPs with epithelial-to-mesenchymal transition (EMT), cell-matrix remodeling, and transcriptional dysregulation, while the TTEmiRs (miR-146b-5p and miR-21-5p) were associated with the modulation of the immune response, EMT, migration, cellular proliferation, and stemness. Molecular docking simulations were performed to evaluate binding affinities between TTEPs and antrocinnamomin, antcin, and antrocin, the bioactive compounds from one of the most reputable Taiwan indigenous medicinal plants (Antrodia camphorata). Our results revealed that antcin exhibited higher binding efficacies toward FN1, ETV5, and NRCAM, whereas antrocin demonstrated the least. Among the targets, fibronectin (FN1) demonstrated high ligandability potential for the compounds whereas NRCAM demonstrated the least. Collectively, our results hinted at the potential of antcin for targeting TTEPs. In conclusion, this comprehensive bioinformatics analysis strongly suggested that TTEPs and TTEmiRs could be used as potential diagnostic biomarker signatures and be exploited as potential targets for therapeutics development.

7.
Biomed Pharmacother ; 154: 113605, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030588

RESUMO

The current study evaluated the protective role of Solanum torvum Swartz against diabetes-induced oxidative stress and tissue impairment in streptozotocin (STZ)-intoxicated rats. Rats with STZ (40 mg/kg intraperitoneally (i.p.))-induced diabetes were divided into five groups (n = 5) and treated with (i) normal saline, (ii) 150 mg/kg body weight (BW) of the ethanol extract of S. torvum leaf (EESTL), (ii) 300 mg/kg BW EESTL, (iv) 100 mg/kg BW metformin, and (v) 50 m/kg BW metformin + 100 mg/kg BW EESTL orally for 21 days. Our results revealed that the EESTL displayed dose-dependent ferric-reducing antioxidant power (FRAP) activity, scavenged DPPH radicals (IC50) = 13.52 ± 0.45 µg/mL), and inhibited lipid peroxidation in an in vitro models. In addition, the EESTL demonstrated dose-dependent inhibitory activity against α-amylase (IC50 =138.46 ± 3.97 µg/mL) and promoted glucose uptake across plasma membranes of yeast cells in a manner comparable to that of metformin. Interestingly, the extract demonstrated in vivo blood glucose normalization effects with concomitant increased activities of antioxidant parameters (superoxide dismutase (SOD), catalase, and reduced glutathione (GSH)) while decreasing malondialdehyde (MDA) levels when compared to untreated rats. Similarly, serum biochemical alterations, and tissues (liver, kidney, and pancreases) histopathological aberrations in untreated rats with STZ-induced diabetes were attenuated by treatment with the EESTL. Biometabolite characterization of the extract identified gallic acid (45.81 ppm), catechin (1.18 ppm), p-coumaric acid (1.43e-1 ppm), DL-proline 5-oxo-methyl ester (9.16 %, retention time (RT): 8.57 min), salicylic acid (3.26% and 7.61 min), and butylated hydroxytoluene (4.75%, RT: 10.18 min) as the major polyphenolic compounds in the plant extract. In conclusion, our study provides preclinical evidence of the antioxidant properties and oxidative stress-preventing role of S. torvum in STZ-dosed diabetic rats. Taken together, the EESTL represents a reserve of bioactive metabolites for managing diabetes and associated complications.


Assuntos
Diabetes Mellitus Experimental , Metformina , Solanum , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Metformina/farmacologia , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos , Estreptozocina/farmacologia
8.
Ultrason Sonochem ; 89: 106133, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037596

RESUMO

Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time âˆ¼ 20 min, ethanol âˆ¼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC-MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.


Assuntos
Nardostachys , Acetilcolinesterase , Antioxidantes/química , Antioxidantes/farmacologia , Catalase , Etanol/química , Glutationa , Nardostachys/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sitosteroides , Sonicação , Superóxido Dismutase
9.
Front Bioeng Biotechnol ; 10: 797440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814023

RESUMO

Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.

10.
Proc Natl Acad Sci U S A ; 119(31): e2121058119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878023

RESUMO

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Hormônios Peptídicos , Raízes de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases , Raízes de Plantas/crescimento & desenvolvimento
11.
Front Med (Lausanne) ; 9: 866343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492324

RESUMO

Methotrexate (MTX), an antineoplastic and immunosuppressive drug, widely used in the treatment of different types of cancers and the management of chronic inflammatory diseases. However, its use is associated with hepatotoxicity. Vitamin C (VC) and curcumin (CUR) exhibit anti-inflammatory and antioxidant effects. Thus, we aimed to investigate the potential hepatoprotective effects of VC and CUR pretreatment alone and in combination against MTX-induced hepatotoxicity. Albino mice were randomly divided into 7 groups: the control group, which received only normal saline; MTX group; VC group, pretreated with VC (100 or 200 mg/kg/day orally) for 10 days; CUR group, pretreated with CUR (10 or 20 mg/kg/day orally); and combination group, which received VC (100 mg/kg) and CUR (10 mg/kg). MTX was administered (20 mg/kg, intraperitoneally) to all the groups on the tenth day to induce hepatotoxicity. Forty eight hours after MTX administration, the mice were anesthetized. Blood samples were collected, the liver was removed for biochemical analysis, and a part of the tissue was preserved in formalin for histopathological analysis. The results indicated that pretreatment with a combination of VC and CUR induced a more significant decrease in the serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, and lactic dehydrogenase and a significant increase in the tissue level of superoxide dismutase and glutathione; furthermore, it induced a significant decrease in malondialdehyde levels and improvement in histopathological changes in the liver tissues, confirming the potential hepatoprotective effects of the combination therapy on MTX-induced liver injury. To conclude, MTX-induced hepatotoxicity is mediated by induction of oxidative stress as evident by increased lipid peroxidation and reduction of antioxidant enzyme activity. Pretreatment with VC, CUR or their combination reduces the MTX-induced hepatotoxicity by antioxidant and anti-inflammatory effects. However, the combined effect of VC and CUR provided a synergistic hepatoprotective effect that surpasses pretreatment with CUR alone but seems to be similar to that of VC 200 mg/kg/day. Therefore, VC and CUR combination or a large dose of VC could be effective against MTX-induced hepatotoxicity. In this regard, further studies are warranted to confirm the combined hepatoprotective effect of VC and CUR against MTX-induced hepatotoxicity.

12.
Biomed Res Int ; 2022: 4122166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496049

RESUMO

Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Graxos Ômega-3 , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Glutationa/metabolismo , Masculino , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estresse Oxidativo , Vitaminas/farmacologia
13.
Saudi J Biol Sci ; 29(4): 2483-2488, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531176

RESUMO

The main objective of this study was to evaluate the effect of chamomile oil (Ch), grape seed oil (GS), their mixture and antibiotic (colistin) (AN) as feed addetives on the productivity of growing rabbits as well as in vitro study to evaluate the antimicrobial activity of both Ch and GS oils. To achive this objective, a total of 96 New Zealand (NZW) weaned rabbits, 5 weeks-old were randomly allotted into eight groups. Rabbits were kept under observation for eight weeks and the trial ended at thirteen weeks-old. The experimental treatments were: 1) Basal diet (BD); 2) BD + antibiotic; 3) BD + 0.5 ml GS/ kg diet; 4) BD + 1.0 ml GS/ kg diet; 5) BD + 1.5 ml GS/ kg diet; 6) BD + 0.5 ml Ch/ kg diet; 7) BD + 1.0 ml Ch/ kg diet and 8) BD + 1.5 Ch/ kg diet. Live body weight (LBW) was markedly elevated (p < 0.05) in groups fed on ration included feed additives compared with the control at weeks 9 and 13 of age. Cumulative body weight gain (BWG) and feed intake (FI) increased (p < 0.05) throughout 5-9 and 5-13 weeks of age in rabbits fed rations plus the studied additives. Feed conversion ratio (FCR) was insignificantly altered by dietary feed additives. Spleen and intestine relative weights reduced (p < 0.05) in groups treated with different studied additives. In view of the experiment finings, it could be concluded that dietary supplementation of GS and Ch have a positive impact on the productivity of growing rabbits than that of the control and antibiotic-treated groups.

14.
Life (Basel) ; 12(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455069

RESUMO

This study aimed to investigate the oxidative neurotoxicity induced by silver nanoparticles (AgNPs) and assess the neuroprotective effects of quercetin against this toxicity. Forty adult male rats were divided into four equal groups: control, AgNPs (50 mg/kg intraperitoneally), quercetin (50 mg/kg orally), and quercetin + AgNPs. After 30 days, blood and brain tissue samples were collected for further studies. AgNP exposure increased lipid peroxidation and decreased glutathione peroxidase, catalase, and superoxide dismutase activities in brain tissue. AgNPs decreased serum acetylcholine esterase activity and γ-aminobutyric acid concentrations. AgNPs upregulated tumor necrosis factor-α, interleukin-1ß, and Bax transcript levels. AgNPs reduced the transcripts of claudin-5, brain-derived neurotrophic factor, paraoxonase, nuclear factor-erythroid factor 2 (Nrf2), and Bcl-2. Histopathologically, AgNPs caused various degenerative changes and neuronal necrosis associated with glial cell reactions. AgNPs increased the immunohistochemical staining of glial fibrillary acidic protein (GFAP) in the cerebrum and cerebellum. Oral treatment with quercetin efficiently counteracted the opposing effects of AgNPs on brain tissue via modulation of tight junction proteins, Nrf2, and paraoxonase, and its positive mechanism in modulating pro-inflammatory cytokines and the downregulation of GFAP expression, and the apoptotic pathway. AgNPs also altered the severity of histopathological lesions and modulated GFAP immunostaining in the examined tissue.

15.
Life (Basel) ; 12(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35207511

RESUMO

The Acrylamide is a toxic compound generated under oxidative stress arising from intracellular ROS production and induced toxicity. It is frequently used in industry and generated through the heating of tobacco and foods high in carbohydrates. The exact mechanism of its toxicity is still unclear. In this study, an extract of the peels of pomegranate (Punica granatum L.), a nutritious and visually appealing fruit with a diverse bioactive profile, was examined for its potential anti-apoptotic, antioxidant, and anti-inflammatory effects. A total of 40 adult male Wistar rats were allocated into four groups of 10 rats each: Group 1 was a negative-control group (CNT) and received normal saline; Group 2 was a positive-control acrylamide group and received acrylamide orally at a dose of 20 mg/kg/bw; in Group 3, the rats were supplemented with pomegranate-peel extract (P.P; 150 mg/kg/bw) orally on a daily basis for 3 weeks, administered simultaneously with the acrylamide treatment described for Group 2; Group 4 was a protective group, and the animals received the pomegranate-peel extract and acrylamide as stated for Groups 2 and 3, with the pomegranate-peel extract (P.P. extract) administered 1 week earlier than the acrylamide. The results indicate that acrylamide exposure increased the serum levels of AST, ALT, creatinine, interleukin-1 beta, and interleukin-6 in an extraordinary manner. In addition, it increased the lipid peroxidation marker malondialdehyde (MDA) and simultaneously weakened antioxidant biomarker activities (SOD, GSH, and catalase) and reduced the levels of interleukin-10. The pomegranate-peel extract was shown to reduce the inflammatory blood markers of interleukin-1 beta and IL-6. Glutathione peroxidase, superoxide dismutase, catalase, and interleukin-10 were all significantly elevated in comparison to the acrylamide-treatment group as a result of the significant reduction in MDA levels induced by the P.P extract. In addition, the pomegranate-peel extract normalized the cyclooxygenase-2 (COX2), transforming growth factor-beta 1 (TGF-ß1), and caspase-3 levels, with a significant upregulation of the mRNA expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2 (Nrf2), and Bcl-2. Therefore, these data reveal that pomegranate peel has anti-inflammatory, antiapoptotic, free-radical-scavenging, and powerful antioxidant activity that protects against acrylamide toxicity.

16.
Saudi J Biol Sci ; 28(9): 5187-5192, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466096

RESUMO

Significant yields enrichments are necessitated for meeting the rapid global growth population together with the expected demanding for food, particularly major crops. Photosynthesis improvement is an unexploited opportunity in research on improving crop yields. However, the lack of sufficient molecular promoters tools leads to the need to explore and analyze native leaf-specified promoters for manipulating photosynthesis activities in plants. Two B. distachyon promoters, sedoheptulose-1, 7-bisphosphatase (SBPase) and fructose-1, 6-bisphosphate aldolase (FBPA), were isolated and cloned into an expression vector upstream of the eYFP reporter gene. The results demonstrate that both promoters actively function in N. benthamiana leaves in both agro-transiently assays, successfully regulating expression specifically to leaf-tissues. Exploring these active promoters could potentially provide new well genetic tools for any transgene expression in plants or leaves to genetically manipulate photosynthesis for yield improvement.

17.
Animals (Basel) ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946602

RESUMO

The study investigated the ability of boswellic acid (BA) to alleviate the testicular and oxidative injury FPN insecticide intoxication in the male rat model. Rats were randomly assigned to six equivalent groups (six rats each) as the following: control rats orally administered with 2 mL physiological saline/kg of body weight (bwt); boswellic acid (BA1) rats orally administered 250 mg BA/kg bwt; boswellic acid (BA2) rats orally administered 500 mg BA/kg bwt; fipronil (FPN) rats orally administered 20 mg FPN/kg bwt; (FPN + BA1) rats orally administered 20 mg FPN/kg bwt plus 250 mg BA/kg bwt, and (FPN + BA2) rats orally administered 20 mg FPN/kg bwt plus 500 mg BA/kg bwt. After 60 days, semen viability percentage and live spermatozoa percentage were decreased, and a considerably increased abnormality of the sperm cells in FPN-administered rats improved substantially with the co-administration of BA. BA had refinement of the histological architecture of testes and sexual glands. Quantitative analysis recorded a noticeable decline in the nuclear cell-proliferating antigen (PCNA) percentage area. FPN triggered cell damage, which was suggested by elevated malondialdehyde and interleukin 6, tumor necrosis factors alpha, and decreased glutathione level. Proapoptotic factor overexpression is mediated by FPN administration, while it decreased the antiapoptotic protein expression. Similarly, BA has shown significant upregulation in steroidogenic and fertility-related gene expression concerning the FPN group. Pathophysiological damages induced by FPN could be alleviated by BA's antioxidant ability and antiapoptotic factor alongside the upregulation of steroidogenic and fertility-related genes and regimented the detrimental effects of FPN on antioxidant and pro-inflammatory biomarkers.

18.
PLoS One ; 16(5): e0251232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989327

RESUMO

Geminiviruses are insect-transmissible, economically vital group of plant viruses, which cause significant losses to crop production and ornamental plants across the world. During this study, infectious clones of three devastating begomoviruses, i.e., Cotton leaf curl Multan virus (CLCuMuV), Ramie mosaic virus (RamV) and Corchorus yellow vein Vietnam virus (CoYVV) were constructed by following novel protocol. All infectious clones were confirmed by cloning and sequencing. All of the infectious clones were agro-inoculated in Agrobacterium. After the agro-infiltrations, all clones were injected into Nicotiana benthamiana and jute plants under controlled condition. After 28 days of inoculation, plants exhibited typical symptoms of their corresponding viruses. All the symptomatic and asymptomatic leaves were collected from inoculated plants for further analysis. The southern blot analysis was used to confirm the infection of studied begomoviruses. At the end, all the products were sequenced and analyzed.


Assuntos
Begomovirus/genética , Genoma Viral/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Agrobacterium/virologia , Animais , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/virologia , DNA Viral/genética , Insetos Vetores/virologia , Análise de Sequência de DNA
19.
J Biomed Nanotechnol ; 17(4): 615-626, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057888

RESUMO

We synthesized bioinspired sericin encapsulated gold nanoparticles (SGNPs) using HAuCl4 as the starting material in a bottom-up approach. Further, two-dimensional (2D) and three-dimensional (3D) conformational changes (folding and unfolding) in sericin were studied using circular dichroism (CD) and fluorescence spectroscopy, respectively, during and after the synthesis of particles. Finally, the synthesized SGNPs were characterized using several physical techniques to ensure their correct synthesis and study the size, stability, and charge over the surface of particles. At the beginning of the reaction, when gold was in the ionic form (Au+³), sericin exhibited maximum electrostatic interaction and underwent unfolding. Au+³ reduced to Au during the reaction, and sericin regained its 3D confirmation due to a decrease in its native electrostatic interactions. However, CD revealed the same patterns of unfolding and folding; a decrease in α helix and an increase inß3 pleated sheets were noticed. Although the 3D structure of sericin was restored after the synthesis of SGNPs, it was substantially altered. In addition, certain changes in the 2D structure were observed; however, these did not alter the activity of sericin. Furthermore, Fourier-transform infrared spectroscopy (FTIR) confirmed these findings. The SGNPs were found to be effective against lung cancer (A549 cells), with an IC50 of 145.49 ßM, without exerting any toxic effects on normal cells (NRK cells). The effectiveness of SGNPs was examined by MTT cytotoxicity and nuclear fragmentation assays. Furthermore, we assessed their ability to produce excessive ROS and release Cyt-c from the mitochondria for caspase-3-mediated apoptosis.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Sericinas , Antineoplásicos/farmacologia , Ouro , Seda
20.
Front Vet Sci ; 8: 817183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155650

RESUMO

Salsola imbricata is a herbal plant native to Saudi Arabia, known for its antioxidative and anti-inflammatory properties. This study explored the protective effects of an ethanolic leaf extract of Salsola imbricata against the oxidative stress and hepatic injury caused by acrylamide. Rats received intragastric administrations of 20 mg/kg of body weight of acrylamide to induce hepatic injury, or 300 mg/kg of body weight of Salsola ethanolic extract orally for 7 days before acrylamide administration. The treatments were continued for 3 weeks. Blood and liver samples were collected from all the groups, and the following biochemical parameters were tested: serum ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma glutaryl transferase), urea, albumin, total proteins, catalase, SOD (superoxide dismutase), reduced glutathione (GSH), nitric oxide (NO), and MDA (malondialdehyde). Quantitative real-time PCR (qRT-PCR) was used to examine the expression of Nrf2 (Nuclear factor-erythroid factor 2-related factor 2), HO-1 (Hemoxygenase-1), COX-2 (Cyclooxgenase-2), TGF-ß1 (transforming growth factor-beta1), Bax, and Bcl2 (B-cell lymphoma 2), which are associated with oxidative stress, fibrosis, apoptosis, and anti-apoptotic effects. The annexin and survivin immunoreactivity were examined at the immunohistochemical level. Pretreatment with the Salsola ethanolic extract reduced the negative impact of acrylamide on ALT, AST, GGT, urea, albumin, and total proteins. The Salsola ethanolic extract reversed acrylamide's effects on serum and tissue antioxidants. Nrf2/HO-1 expression was downregulated, while COX-2 and TGF-ß1 were upregulated in the acrylamide-administered group and normalized by the pre-administration of Salsola ethanolic extract to the acrylamide experimental group. The immunoreactivity of annexin and survivin was restored in the experimental group administered Salsola ethanolic extract plus acrylamide. In conclusion, Salsola ethanolic extract inhibits and regulates the side effects induced in the liver by acrylamide. Salsola induced its impacts by regulating inflammation, oxidative stress, and apoptosis-/anti-apoptosis-associated genes at the biochemical, molecular, and cellular levels. Salsola is recommended as oxidative stress relievers against environmental toixicity at high altitude areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA