Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789895

RESUMO

AT1 receptor blockers (ARBs) are commonly used drugs to treat cardiovascular disease and hypertension, but research on their impact on brain disorders is unattainable. Valsartan (VAL) is a drug that specifically blocks AT1 receptor. Despite the previous evidence for VAL to provide neuroprotection in case of ischemic reperfusion injury, evaluation of their potential in mitigating mitochondrial dysfunction that causes neuronal cell death and neurobehavioral impairment remains unknown. The aim of this study was to evaluate the therapeutic effect of repurposed drug VAL against ischemic reperfusion injury-induced neuronal alternation. tMCAO surgery was performed to induce focal cerebral ischemic reperfusion injury. Following ischemic reperfusion injury, we analyzed the therapeutic efficacy of VAL by measuring the infarct volume, brain water content, mitochondrial oxidative stress, mitochondrial membrane potential, histopathological architecture, and apoptotic marker protein. Our results showed that VAL administrations (5 and 10 mg/kg b.wt.) mitigated the brain damage, enhanced neurobehavioral outcomes, and alleviated mitochondrial-mediated oxidative damage. In addition to this, our findings demonstrated that VAL administration inhibits neuronal apoptosis by restoring the mitochondrial membrane potential. A follow-up investigation demonstrated that VAL induces BDNF expression and promoted ischemic tolerance via modulating the Akt/p-Creb signaling pathway. In summary, our results suggested that VAL administration provided neuroprotection, ameliorated mitochondrial dysfunction, preserved the integrity of neurons, and lead to functional improvement after ischemic reperfusion injury.

2.
Adv Protein Chem Struct Biol ; 138: 275-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220428

RESUMO

Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-ß, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto , Humanos , Proteômica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Genômica , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fatores de Despolimerização de Actina/metabolismo , Anexinas
3.
Life Sci ; 333: 122139, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783266

RESUMO

AIMS: Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS: We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS: On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE: Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.


Assuntos
Neoplasias Ósseas , Dor do Câncer , MicroRNAs , Osteossarcoma , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Ósseas/complicações , Neoplasias Ósseas/genética , Dor do Câncer/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C3H , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Osteossarcoma/genética , Qualidade de Vida
4.
Int J Biol Macromol ; 248: 125799, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37451381

RESUMO

Breast cancer is the most frequent cancer in women; however, it is curable in most cases (up to 80 %) when detected and treated at an early non-metastatic stage. Nanotechnology has led to the development of potential chemotherapeutic techniques, particularly for tumor treatment. Nanotechnology has therapeutic and pharmaceutical applications. Chitosan, a natural polymer derived from chitin, has been extensively studied for its potential applications in a wide range of fields. This includes medicine for its anticancer properties. In the present study, Chitosan-encapsulated-NiO-TiO2-Farnesol hybrid nanomaterials (CNTF HNMs) were synthesized and characterized using several techniques, including electron microscopy (TEM, FE-SEM), spectroscopy (UV-visible [UV-Vis], Fourier Transform Infrared [FT-IR] spectroscopy, and photoluminescence [PL]), energy-dispersive X-ray spectroscopy (EDX) composition analysis, X-ray diffraction, and dynamic light scattering (DLS) analyses. With an estimated average crystallite size of 34.8 nm, the face-cantered cubic crystalline structure of the CNTF HNMs is identified. Cell viability assay by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DAPI (4',6-diamidino-2-phenylindole) staining, dual AO/EtBr (Acridine Orange/ Ethidium bromide), JC-1 (5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide), DCFH-DA (Dichloro-dihydro-fluorescein diacetate), Annexin V-FITC (Fluorescein isothiocyanate) /PI (Propidium Iodide), and cell cycle study was used to assess the ability of nanoparticles (NPs) to kill MDA-MB-231 cells. The CNTF HNMs had high antibacterial effectiveness against multi-drug resistant extended-spectrum beta-lactamases (ESBL)-producing gram-negative bacterial pathogens and reference strains. The findings suggest that NPs increased the number of reactive oxygen species (ROS), changed the Δψm, and initiated apoptosis. There is enormous potential for CNTF HNMs as both antibacterial and anticancer agents.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Quitosana , Nanopartículas Metálicas , Feminino , Humanos , Farneseno Álcool , Quitosana/farmacologia , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Fator Neurotrófico Ciliar , Nanopartículas Metálicas/química , Antibacterianos/química
5.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049321

RESUMO

Nanotechnology has been recognized as a highly interdisciplinary field of the twenty-first century, with diverse applications in biotechnology, healthcare, and material science. One of the most commonly employed non-toxic nanoparticles, magnesium oxide nanoparticles (MgO NPs), is simple, inexpensive, biocompatible, and biodegradable. Several researchers are interested in the biosynthesis process of MgO NPs through chemical and physical approaches. This is because of their simplicity, affordability, and environmental safety. In the current study, green MgO-Chitosan-Pluronic F127-Escin (MCsPFE) NPs have been synthesized and characterized via various techniques like UV-visible, Fourier-transform infrared spectroscopy, Energy dispersive X-ray composition analysis, Transmission electron microscopy, field emission scanning electron microscopy, X-ray Diffraction, Photoluminescence, and Dynamic light scattering analyses. The average crystallite size of MCsPFE NPs was 46 nm, and a face-centered cubic crystalline structure was observed. Further, the antimicrobial effectiveness of NPs against diverse pathogens has been assessed. The cytotoxic potential of the nanoparticles against MDA-MB-231 cell lines was evaluated using the MTT test, dual AO/EB, JC-1, DCFH-DA, and DAPI staining procedures. High antimicrobial efficacy of MCsPFE NPs against Gram-positive and Gram-negative bacterial strains as well as Candida albicans was observed. The findings concluded that the NPs augmented the ROS levels in the cells and altered the Δψm, leading to the initiation of the intrinsic apoptotic cell death pathway. Thus, green MCsPFE NPs possess immense potential to be employed as an effective antimicrobial and anticancer treatment option.

6.
Biomedicines ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36830857

RESUMO

This study effectively reports the influence of experimental incubation period on the sol-gel production of husk-like zinc oxide nanoparticles (ZNPs) and their anti-cancerous abilities. The surface morphology of ZNPs was studied with the help of SEM. With the use of TEM, the diameter range of the ZNPs was estimated to be ~86 and ~231 nm for ZNPA and ZNPB, prepared by incubating zinc oxide for 2 and 10 weeks, respectively. The X-ray diffraction (XRD) investigation showed that ZNPs had a pure wurtzite crystal structure. On prolonging the experimental incubation, a relative drop in aspect ratio was observed, displaying a distinct blue-shift in the UV-visible spectrum. Furthermore, RBC lysis assay results concluded that ZNPA and ZNPB both demonstrated innoxious nature. As indicated by MTT assay, reactive oxygen species (ROS) release, and chromatin condensation investigations against the human epidermoid carcinoma (HEC) A431 cells, ZNPB demonstrated viable relevance to chemotherapy. Compared to ZNPB, ZNPA had a slightly lower IC50 against A431 cells due to its small size. This study conclusively describes a simple, affordable method to produce ZNP nano-formulations that display significant cytotoxicity against the skin cancer cell line A431, suggesting that ZNPs may be useful in the treatment of cancer.

7.
Appl Biochem Biotechnol ; 194(12): 5918-5944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35838886

RESUMO

Novel SARS-CoV-2 claimed a large number of human lives. The main proteins for viral entry into host cells are SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and spike receptor-binding domain bound with ACE2 (spike RBD-ACE2; PDB ID: 6M0J). Currently, specific therapies are lacking globally. This study was designed to investigate the bioactive components from Moringa oleifera leaf (MOL) extract by gas chromatography-mass spectroscopy (GC-MS) and their binding interactions with spike glycoprotein and spike RBD-ACE2 protein through computational analysis. GC-MS-based analysis unveiled the presence of thirty-seven bioactive components in MOL extract, viz. polyphenols, fatty acids, terpenes/triterpenes, phytosterols/steroids, and aliphatic hydrocarbons. These bioactive phytoconstituents showed potential binding with SARS-CoV-2 spike glycoprotein and spike RBD-ACE2 protein through the AutoDock 4.2 tool. Further by using AutoDock 4.2 and AutoDock Vina, the top sixteen hits (binding energy ≥ - 6.0 kcal/mol) were selected, and these might be considered as active biomolecules. Moreover, molecular dynamics simulation was determined by the Desmond module. Interestingly two biomolecules, namely ß-tocopherol with spike glycoprotein and ß-sitosterol with spike RBD-ACE2, displayed the best interacting complexes and low deviations during 100-ns simulation, implying their strong stability and compactness. Remarkably, both ß-tocopherol and ß-sitosterol also showed the drug- likeness with no predicted toxicity. In conclusion, these findings suggested that both compounds ß-tocopherol and ß-sitosterol may be developed as anti-SARS-CoV-2 drugs. The current findings of in silico approach need to be optimized using in vitro and clinical studies to prove the effectiveness of phytomolecules against SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Moringa oleifera , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , beta-Tocoferol , Compostos Fitoquímicos/farmacologia , Folhas de Planta , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Ligação Proteica
8.
Adv Protein Chem Struct Biol ; 130: 59-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35534116

RESUMO

Enzymes, which are biological molecules, are constructed from polypeptide chains, and these molecules are activated through reaction mechanisms. It is the role of enzymes to speed up chemical reactions that are used to build or break down cell structures. Activation energy is reduced by the enzymes' selective binding of substrates in a protected environment. In enzyme tertiary structures, the active sites are commonly situated in a "cleft," which necessitates the diffusion of substrates and products. The amino acid residues of the active site may be far apart in the primary structure owing to the folding required for tertiary structure. Due to their critical role in substrate binding and attraction, changes in amino acid structure at or near the enzyme's active site usually alter enzyme activity. At the enzyme's active site, or where the chemical reactions occur, the substrate is bound. Enzyme substrates are the primary targets of the enzyme's active site, which is designed to assist in the chemical reaction. This chapter elucidates the summary of structure and chemistry of enzymes, their active site features, charges and role of water in the structures to clarify the biochemistry of the enzymes in the depth of atomic features.


Assuntos
Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
9.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944045

RESUMO

Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (-5.6 kcal mol-1) was lower than that of acetylcholine (-4.1 kcal mol-1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and ß-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.


Assuntos
Acetilcolinesterase/metabolismo , Monoterpenos Acíclicos/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Acetilcolina/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacocinética , Animais , Inibidores da Colinesterase/química , Cinética , Ligantes , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Tacrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA