Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-16, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850444

RESUMO

GPCRs are a family of transmembrane receptors that are profoundly linked to various neurological disorders, among which is Parkinson's disease (PD). PD is the second most ubiquitous neurological disorder after Alzheimer's disease, characterized by the depletion of dopamine in the central nervous system due to the impairment of dopaminergic neurons, leading to involuntary movements or dyskinesia. The current standard of care for PD is Levodopa, a dopamine precursor, yet the chronic use of this agent can exacerbate motor symptoms. Recent studies have investigated the effects of combining A2AR antagonist and 5-HT1A agonist on dyskinesia and motor complications in animal models of PD. It has been proved that the drug combination has significantly improved involuntary movements while maintaining motor activity, highlighting as a result new lines of therapy for PD treatments, through the regulation of both receptors. Using a combination of ligand-based pharmacophore modelling, virtual screening, and molecular dynamics simulation, this study intends on identifying potential dual-target compounds from IBScreen. Results showed that the selected models displayed good enrichment metrics with a near perfect receiver operator characteristic (ROC) and Area under the accumulation curve (AUAC) values, signifying that the models are both specific and sensitive. Molecular docking and ADMET analysis revealed that STOCK2N-00171 could be potentially active against A2AR and 5-HT1A. Post-MD analysis confirmed that the ligand exhibits a stable behavior throughout the simulation while maintaining crucial interactions. These results imply that STOCK2N-00171 can serve as a blueprint for the design of novel and effective dual-acting ligands targeting A2AR and 5-HT1A.Communicated by Ramaswamy H. Sarma.

2.
Vet Sci ; 10(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624302

RESUMO

The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/ß cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.

3.
Vaccines (Basel) ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36423005

RESUMO

Rhipicephalus microplus tick highly affects the veterinary sector throughout the world. Different tick control methods have been adopted, and the identification of tick-derived highly immunogenic sequences for the development of an anti-tick vaccine has emerged as a successful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.), Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0), aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence revealed 100% identity with the nucleotide sequences of Pakistan's formerly reported R. microplus, and full-length immunogenic sequences revealed maximum identities to the most similar sequences reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low nonsynonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin 2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respectively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first report on the molecular characterization of clade C R. microplus-derived immunogenic sequences.

4.
Viruses ; 13(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834973

RESUMO

Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Leucose Enzoótica Bovina/virologia , Vírus da Leucemia Bovina , Animais , Bovinos , Testes Diagnósticos de Rotina , Leucose Enzoótica Bovina/diagnóstico , Leucose Enzoótica Bovina/transmissão , Feminino , Genoma Viral , Vírus Linfotrópico T Tipo 1 Humano , Vírus da Leucemia Bovina/genética , Prevalência , Virulência
5.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367614

RESUMO

Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with -10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosídeos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Leishmania donovani/efeitos dos fármacos , Luteolina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antiprotozoários/química , Inibidores Enzimáticos/química , Humanos , Leishmania donovani/enzimologia , Simulação de Dinâmica Molecular , Células THP-1
6.
ACS Omega ; 5(13): 7254-7261, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280866

RESUMO

Enterohemorrhagic Escherichia coli infection is associated with gastrointestinal disorders, including diarrhea and colorectal cancer. Although evidences have established the involvement of E. coli in the growth of colon cancer, the molecular mechanisms of carcinogenesis of cancer growth and development are not well understood. We analyzed E. coli protein targeting in host cell organelles and the implication in colon cancer using in silico approaches. Our results indicated that many E. coli proteins targeted the endoplasmic reticulum (ER), ER membranes, Golgi apparatus, Golgi apparatus membranes, peroxisomes, nucleus, nuclear membrane, mitochondria, and mitochondrial membrane of host cells. These targeted proteins in ER, Golgi apparatus, peroxisomes, nucleus, and mitochondria may alter the normal functioning of various pathways including DNA repair, apoptosis, replication, transcription, and protein folding in E. coli-infected host cells. The results of the current in silico study provide insights into E. coli pathogenesis and may aid in designing new preventive and therapeutic strategies.

7.
Am J Physiol Renal Physiol ; 316(6): F1133-F1140, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785353

RESUMO

Chemotherapy-induced hemorrhagic cystitis is characterized by bladder pain and voiding dysfunction caused by hemorrhage and inflammation. Novel therapeutic options to treat hemorrhagic cystitis are needed. We previously reported that systemic administration of the Schistosomiasis hematobium-derived protein H-IPSEH06 (IL-4-inducing principle from Schistosoma mansoni eggs) is superior to three doses of MESNA in alleviating hemorrhagic cystitis (Mbanefo EC, Le L, Pennington LF, Odegaard JI, Jardetzky TS, Alouffi A, Falcone FH, Hsieh MH. FASEB J 32: 4408-4419, 2018). Based on prior reports by others on S. mansoni IPSE (M-IPSE) and additional work by our group, we reasoned that H-IPSE mediates its effects on hemorrhagic cystitis by binding IgE on basophils and inducing IL-4 expression, promoting urothelial proliferation, and translocating to the nucleus to modulate expression of genes implicated in relieving bladder dysfunction. We speculated that local bladder injection of the S. hematobium IPSE ortholog IPSEH03, hereafter called H-IPSEH03, might be more efficacious in preventing hemorrhagic cystitis compared with systemic administration of IPSEH06. We report that H-IPSEH03, like M-IPSE and H-IPSEH06, activates IgE-bearing basophils in a nuclear factor of activated T-cells reporter assay, indicating activation of the cytokine pathway. Furthermore, H-IPSEH03 attenuates ifosfamide-induced increases in bladder wet weight in an IL-4-dependent fashion. H-IPSEH03 relieves hemorrhagic cystitis-associated allodynia and modulates voiding patterns in mice. Finally, H-IPSEH03 drives increased urothelial cell proliferation, suggesting that IPSE induces bladder repair mechanisms. Taken together, H-IPSEH03 may be a potential novel therapeutic to treat hemorrhagic cystitis by basophil activation, attenuation of allodynia, and promotion of urothelial cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cistite/prevenção & controle , Proteínas do Ovo/administração & dosagem , Proteínas de Helminto/administração & dosagem , Hemorragia/prevenção & controle , Fatores Imunológicos/administração & dosagem , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos , Administração Intravesical , Animais , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Basófilos/metabolismo , Linhagem Celular , Cistite/induzido quimicamente , Cistite/imunologia , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hemorragia/induzido quimicamente , Hemorragia/imunologia , Hemorragia/metabolismo , Humanos , Ifosfamida , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Injeções Intravenosas , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Bexiga Urinária/imunologia , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Urodinâmica/efeitos dos fármacos , Urotélio/imunologia , Urotélio/metabolismo , Urotélio/patologia
8.
Sci Rep ; 9(1): 1586, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733505

RESUMO

Ifosfamide and other oxazaphosphorines can result in hemorrhagic cystitis, a constellation of complications caused by acrolein metabolites. We previously showed that a single dose of IPSE (Interleukin-4-inducing principle from Schistosoma eggs), a schistosome-derived host modulatory protein, can ameliorate ifosfamide-related cystitis; however, the mechanisms underlying this urotoxicity and its prevention are not fully understood. To provide insights into IPSE's protective mechanism, we undertook transcriptional profiling of bladders from ifosfamide-treated mice, with or without pretreatment with IPSE or IPSE-NLS (a mutant of IPSE lacking nuclear localization sequence). Ifosfamide treatment upregulated a range of proinflammatory genes. The IL-1ß-TNFα-IL-6 proinflammatory cascade via NFκB and STAT3 pathways was identified as the key driver of inflammation. The NRF2-mediated oxidative stress response pathway, which regulates heme homoeostasis and expression of antioxidant enzymes, was highly activated. Anti-inflammatory cascades, namely Wnt, Hedgehog and PPAR pathways, were downregulated. IPSE drove significant downregulation of major proinflammatory pathways including the IL-1ß-TNFα-IL-6 pathways, interferon signaling, and reduction in oxidative stress. IPSE-NLS reduced inflammation but not oxidative stress. Taken together, we have identified signatures of acute-phase inflammation and oxidative stress in ifosfamide-injured bladder, which are reversed by pretreatment with IPSE. This work revealed several pathways that could be therapeutically targeted to prevent ifosfamide-induced hemorrhagic cystitis.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Cistite/etiologia , Cistite/metabolismo , Proteínas do Ovo/imunologia , Proteínas de Helminto/imunologia , Hemorragia/etiologia , Hemorragia/metabolismo , Ifosfamida/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Cistite/diagnóstico , Citocinas/metabolismo , Perfilação da Expressão Gênica , Hemorragia/diagnóstico , Mediadores da Inflamação/metabolismo , Estresse Oxidativo , Transcriptoma
9.
FASEB J ; 32(8): 4408-4419, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29613835

RESUMO

Chemotherapy-induced hemorrhagic cystitis (CHC) can be difficult to manage. Prior work suggests that IL-4 alleviates ifosfamide-induced hemorrhagic cystitis (IHC), but systemically administered IL-4 causes significant side effects. We hypothesized that the Schistosoma hematobium homolog of IL-4-inducing principle from Schistosoma mansoni eggs (H-IPSE), would reduce IHC and associated bladder pathology. IPSE binds IgE on basophils and mast cells, triggering IL-4 secretion by these cells. IPSE is also an "infiltrin," translocating into the host nucleus to modulate gene transcription. Mice were administered IL-4, H-IPSE protein or its nuclear localization sequence (NLS) mutant, with or without neutralizing anti-IL-4 antibody, or 2-mercaptoethane sulfonate sodium (MESNA; a drug used to prevent IHC), followed by ifosfamide. Bladder tissue damage and hemoglobin content were measured. Spontaneous and evoked pain, urinary frequency, and bladdergene expression analysis were assessed. Pain behaviors were interpreted in a blinded fashion. One dose of H-IPSE was superior to MESNA and IL-4 in suppressing bladder hemorrhage in an IL-4-dependent fashion and comparable with MESNA in dampening ifosfamide-triggered pain behaviors in an NLS-dependent manner. H-IPSE also accelerated urothelial repair following IHC. Our work represents the first therapeutic exploitation of a uropathogen-derived host modulatory molecule in a clinically relevant bladder disease model and indicates that IPSE may be an alternative to MESNA for mitigating CHC.-Mbanefo, E. C., Le, L., Pennington, L. F., Odegaard, J. I., Jardetzky, T. S., Alouffi, A., Falcone, F. H., Hsieh, M. H. Therapeutic exploitation of IPSE, a urogenital parasite-derived host modulatory protein, for chemotherapy-induced hemorrhagic cystitis.


Assuntos
Cistite/tratamento farmacológico , Proteínas do Ovo/farmacologia , Proteínas de Helminto/farmacologia , Hemorragia/tratamento farmacológico , Transtornos Hemorrágicos/tratamento farmacológico , Parasitos/metabolismo , Animais , Antineoplásicos/efeitos adversos , Basófilos/efeitos dos fármacos , Cistite/induzido quimicamente , Feminino , Hemorragia/induzido quimicamente , Transtornos Hemorrágicos/induzido quimicamente , Imunoglobulina E/metabolismo , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Schistosoma haematobium/metabolismo , Schistosoma mansoni/metabolismo , Bexiga Urinária/efeitos dos fármacos
10.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28923894

RESUMO

Urogenital schistosomiasis, caused by the parasitic trematode Schistosoma haematobium, affects over 112 million people worldwide. As with Schistosoma mansoni infections, the pathology of urogenital schistosomiasis is related mainly to the egg stage, which induces granulomatous inflammation of affected tissues. Schistosoma eggs and their secretions have been studied extensively for the related organism S. mansoni, which is more amenable to laboratory studies. Indeed, we have shown that IPSE/alpha-1 (here M-IPSE), a major protein secreted from S. mansoni eggs, can infiltrate host cells. Although the function of M-IPSE is unknown, its ability to translocate to the nuclei of host cells and bind DNA suggests a possible role in immune modulation of host cell tissues. Whether IPSE homologs are expressed in other schistosome species has not been investigated. Here, we describe the cloning of two paralog genes, H03-IPSE and H06-IPSE, which are orthologs of M-IPSE, from egg cDNA of S. haematobium Using PCR and immunodetection, we confirmed that the expression of these genes is restricted to the egg stage and female adult worms, while the H-IPSE protein is detectable only in mature eggs and not adults. We show that both H03-IPSE and H06-IPSE proteins can infiltrate HTB-9 bladder cells when added exogenously to culture medium. Monopartite C-terminal nuclear localization sequence (NLS) motifs conserved in H03-IPSE, SKRRRKY, and H06-IPSE SKRGRKY, are responsible for targeting the proteins to the nucleus of HTB-9 cells, as demonstrated by site-directed mutagenesis and green fluorescent protein (GFP) tagging. Thus, S. haematobium eggs express IPSE homologs that appear to perform similar functions in infiltrating host cells.


Assuntos
Proteínas de Helminto/metabolismo , Óvulo/metabolismo , Schistosoma haematobium/patogenicidade , Animais , Linhagem Celular Tumoral , Núcleo Celular/parasitologia , Clonagem Molecular , Proteínas de Ligação a DNA , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Proteínas de Helminto/genética , Humanos , Imunomodulação , Inflamação , Proteínas Recombinantes/genética , Esquistossomose Urinária/parasitologia , Bexiga Urinária/citologia , Bexiga Urinária/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA