Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247860

RESUMO

As a form of immunomodulatory therapeutics, mesenchymal stromal/stem cells (MSCs) from umbilical cord (UC) tissue were assessed for their dynamic interplay with the Th-17 immune response pathway. UC-MSCs were able to modulate lymphocyte response by promoting a Th-17-like profile. Such modulation depended on the cell ratio of the cocultures as well as the presence of an inflammatory setting underlying their plasticity. UC-MSCs significantly increased the expression of IL-17A and RORγt but differentially modulated T cell expression of IL-23R. In parallel, the secretion profile of the fifteen factors (IL1ß, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α) involved in the Th-17 immune response pathway was substantially altered during these cocultures. The modulation of these factors demonstrates the capacity of UC-MSCs to sense and actively respond to tissue challenges. Protein network and functional enrichment analysis indicated that several biological processes, molecular functions, and cellular components linked to distinct Th-17 signaling interactions are involved in several trophic, inflammatory, and immune network responses. These immunological changes and interactions with the Th-17 pathway are likely critical to tissue healing and may help to identify molecular targets that will improve therapeutic strategies involving UC-MSCs.


Assuntos
Interleucina-17 , Células-Tronco Mesenquimais , Células Th17 , Técnicas de Cocultura , Imunomodulação
2.
Inflamm Res ; 72(12): 2145-2153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874359

RESUMO

OBJECTIVE AND DESIGN: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS: Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION: The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.


Assuntos
Araquidonato 15-Lipoxigenase , Osteoartrite , Humanos , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Osteoartrite/genética , Osteoartrite/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA