Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 25(3): 528-540, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36266600

RESUMO

PURPOSE: The presence and functional competence of intratumoral CD8+ T cells is often a barometer for successful immunotherapeutic responses in cancer. Despite this understanding and the extensive number of clinical-stage immunotherapies focused on potentiation (co-stimulation) or rescue (checkpoint blockade) of CD8+ T cell antitumor activity, dynamic biomarker strategies are often lacking. To help fill this gap, immuno-PET nuclear imaging has emerged as a powerful tool for in vivo molecular imaging of antibody targeting. Here, we took advantage of immuno-PET imaging using 89Zr-IAB42M1-14, anti-mouse CD8 minibody, to characterize CD8+ T-cell tumor infiltration dynamics following ICOS (inducible T-cell co-stimulator) agonist antibody treatment alone and in combination with PD-1 blocking antibody in a model of mammary carcinoma. PROCEDURES: Female BALB/c mice with established EMT6 tumors received 10 µg, IP of either IgG control antibodies, ICOS agonist monotherapy, or ICOS/PD-1 combination therapy on days 0, 3, 5, 7, 9, 10, or 14. Imaging was performed at 24 and 48 h post IV dose of 89Zr IAB42M1-14. In addition to 89Zr-IAB42M1-14 uptake in tumor and tumor-draining lymph node (TDLN), 3D radiomic features were extracted from PET/CT images to identify treatment effects. Imaging mass cytometry (IMC) and immunohistochemistry (IHC) was performed at end of study. RESULTS: 89Zr-IAB42M1-14 uptake in the tumor was observed by day 11 and was preceded by an increase in the TDLN as early as day 4. The spatial distribution of 89Zr-IAB42M1-14 was more uniform in the drug treated vs. control tumors, which had spatially distinct tracer uptake in the periphery relative to the core of the tumor. IMC analysis showed an increased percentage of cytotoxic T cells in the ICOS monotherapy and ICOS/PD-1 combination group compared to IgG controls. Additionally, temporal radiomics analysis demonstrated early predictiveness of imaging features. CONCLUSION: To our knowledge, this is the first detailed description of the use of a novel immune-PET imaging technique to assess the kinetics of CD8+ T-cell infiltration into tumor and lymphoid tissues following ICOS agonist and PD-1 blocking antibody therapy. By demonstrating the capacity for increased spatial and temporal resolution of CD8+ T-cell infiltration across tumors and lymphoid tissues, these observations underscore the widespread potential clinical utility of non-invasive PET imaging for T-cell-based immunotherapy in cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Feminino , Linfócitos T CD8-Positivos/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1 , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Imunoglobulina G , Linhagem Celular Tumoral , Proteína Coestimuladora de Linfócitos T Induzíveis
2.
J Control Release ; 268: 102-112, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29042321

RESUMO

Long-Acting Parenterals (LAPs) have been used in the clinic to provide sustained therapeutic drug levels at a target site, and thereby reducing the frequency of dosing required. In an effort to understand the factors associated with long-acting cabotegravir (GSK1265744 LAP) pharmacokinetic variability, the current study was designed to investigate the temporal relationship between intramuscular (IM) or subcutaneous (SC) drug depot morphology and distribution kinetics with plasma pharmacokinetics. Therefore, a multi-modal molecular imaging (MRI & MALDI IMS) approach was employed to examine the temporal GSK1265744 LAP biodistribution in rat following either IM or SC administration. Serial MRI was performed immediately post drug administration, and then at day 1 (24h post), 2, 3, 4, 7, and 14. In a separate cohort of rats, an MRI contrast agent, Feraheme® (USPIO), was administered 2days post IM drug injection in order to investigate the potential involvement of macrophages trafficking to the GSK1265744 LAP and Vehicle depot sites. The GSK1265744 LAP depot volume increased rapidly by day 2 in the IM injected rats (~3-7 fold) compared with a ~1 fold increase in the SC injected rats. In addition, the USPIO contrast agent labeled macrophages were shown to be present in the depot region of the GSK1265744 LAP injected gastrocnemius while the Vehicle injected gastrocnemius appeared to show reduced uptake. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) of muscle and abdominal tissue sections identified the drug content primarily within the depot. Co-registration of the GSK1265744 ion images with immunohistochemical images established that the drug was taken up by macrophages associated with the depot. Linear regression analysis demonstrated that the drug depot characteristics including volume, surface area, and perimeter assessed by MRI at day 2 correlated with early time point plasma drug concentrations. In summary, a multimodal molecular imaging approach was used to identify the drug depot location and volumetric/physiologic changes in both IM and SC locations following GSK1265744 LAP administration. The IM depot volume increased rapidly to a maximum volume at 2days post-GSK1265744 LAP administration, while the Vehicle depot did not suggesting that the active drug substance and/or related particle was a key driver for drug depot evolution. The depot expansion was associated with an increase in macrophage infiltration and edema in and around the depot region and was correlated to plasma drug concentration at early time points (0-4days). Consequently, molecular imaging approaches may be used in patients to help understand the biodistribution of GSK1265744 LAP and its associated pharmacokinetics.


Assuntos
Piridonas/administração & dosagem , Piridonas/farmacocinética , Animais , Meios de Contraste/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Óxido Ferroso-Férrico/administração & dosagem , Injeções Intramusculares , Injeções Subcutâneas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Piridonas/sangue , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual
3.
PLoS One ; 12(4): e0176075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448604

RESUMO

The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced 'AccretaMab' monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable, non-invasive techniques to support dose optimization, and assess immune activation and anti-tumor responses.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Macrófagos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-3/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Feminino , Óxido Ferroso-Férrico/química , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Macrófagos/citologia , Macrófagos/patologia , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Radioisótopos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-3/metabolismo , Distribuição Tecidual , Transplante Heterólogo , Zircônio/química
4.
Oncotarget ; 7(26): 39861-39871, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223434

RESUMO

Fibroblast growth factor (FGF) ligand-dependent signaling has a fundamental role in cancer development and tumor maintenance. GSK3052230 (also known as FP-1039) is a soluble decoy receptor that sequesters FGFs and inhibits FGFR signaling. Herein, the efficacy of this molecule was tested in models of mesothelioma, a tumor type shown to express high levels of FGF2 and FGFR1. GSK3052230 demonstrated antiproliferative activity across a panel of mesothelioma cell lines and inhibited growth of tumor xenografts in mice. High expression of FGF2 and FGFR1 correlated well with response to FGF pathway inhibition. GSK3052230 inhibited MAPK signaling as evidenced by decreased phospho-ERK and phospho-S6 levels in vitro and in vivo. Additionally, dose-dependent and statistically-significant reductions in tumor vessel density were observed in GSK3052230-treated tumors compared to vehicle-treated tumors. These data support the role of GSK3052230 in effectively targeting FGF-FGFR autocrine signaling in mesothelioma, demonstrate its impact on tumor growth and angiogenesis, and provide a rationale for the current clinical evaluation of this molecule in mesothelioma patients.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Mesotelioma/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Comunicação Autócrina , Linhagem Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoglobulina G/química , Ligantes , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neovascularização Patológica , Proteínas de Fusão Oncogênica/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Proteínas Recombinantes de Fusão
5.
Cancer Res ; 73(6): 1993-2002, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333938

RESUMO

The unfolded protein response (UPR) is a signal transduction pathway that coordinates cellular adaptation to microenvironmental stresses that include hypoxia, nutrient deprivation, and change in redox status. These stress stimuli are common in many tumors and thus targeting components of the UPR signaling is an attractive therapeutic approach. We have identified a first-in-class, small molecule inhibitor of the eukaryotic initiation factor 2-alpha kinase 3 (EIF2AK3) or PERK, one of the three mediators of UPR signaling. GSK2656157 is an ATP-competitive inhibitor of PERK enzyme activity with an IC(50) of 0.9 nmol/L. It is highly selective for PERK with IC(50) values >100 nmol/L against a panel of 300 kinases. GSK2656157 inhibits PERK activity in cells with an IC(50) in the range of 10-30 nmol/L as shown by inhibition of stress-induced PERK autophosphorylation, eIF2α substrate phosphorylation, together with corresponding decreases in ATF4 and CAAT/enhancer binding protein homologous protein (CHOP) in multiple cell lines. Oral administration of GSK2656157 to mice shows a dose- and time-dependent pharmacodynamic response in pancreas as measured by PERK autophosphorylation. Twice daily dosing of GSK2656157 results in dose-dependent inhibition of multiple human tumor xenografts growth in mice. Altered amino acid metabolism, decreased blood vessel density, and vascular perfusion are potential mechanisms for the observed antitumor effect. However, despite its antitumor activity, given the on-target pharmacologic effects of PERK inhibition on pancreatic function, development of any PERK inhibitor in human subjects would need to be cautiously pursued in cancer patients.


Assuntos
Adenina/análogos & derivados , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Adenina/farmacologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos
6.
PLoS One ; 6(8): e23570, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887274

RESUMO

BACKGROUND: The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS: Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE: Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function.


Assuntos
Cardiotônicos/farmacologia , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Coração , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Insulina/sangue , Ácido Láctico/sangue , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Análise de Componente Principal , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
7.
Invest Radiol ; 45(11): 702-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20829703

RESUMO

OBJECTIVE: Inflammation within atherosclerotic lesions increases the risk for plaque rupture and thrombosis. A functional approach to plaque analysis is the intravenous administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) that enables visualization of macrophages residing in the plaques. In this study, we sought to characterize the age-related inflammatory status associated with atherosclerosis lesion progression in ApoE mice using USPIO-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS: A total of 24 ApoE mice were divided in 4 groups (N = 6) and were given a high cholesterol diet from 6 weeks of age to the end of the protocol. One group per MR time point was investigated at 10, 16, 24, and 34 weeks of age. Each MR examination was performed on a 4.7 T scanner and consisted of baseline and 48 hours post-USPIO administration imaging sessions. P904, a USPIO contrast agent (Guerbet, Paris, France) with a potential for plaque macrophage targeting, was used.Vessel wall area measurements were performed on high resolution spin echo transverse images. Multi-echo gradient-echo images acquired with the same geometry were used to calculate T2* maps of the vessel wall using a pixel-by-pixel monoexponential fit. A one-way analysis of variance was performed to characterize the temporal variation of vessel wall area, susceptibility artifact area, baseline, and post-USPIO T2* values. MR measurements were correlated with the histologic findings. RESULTS: A significant increase was found in the aortic wall area from 1.4 ± 0.2 at 10 weeks to 2.0 ± 0.3 mm at 34 weeks of age (P < 0.05). Concerning the post-USPIO MRI, signal loss regions, with patterns spanning from focal to the complete disappearance of the vessel wall, were observed on all postcontrast images. A significant increase in the size of the susceptibility artifact was observed from 0.5 ± 0.2 to 2.4 ± 1.0 at 24 weeks (P < 0.05) and to 2.0 ± 0.9 mm at 34 weeks (P < 0.05).The T2* values calculated on the 48 hours post-USPIO images were shorter compared with baseline. The decrease was 34% ± 16% at 10 weeks, 57% ± 11% at 16 weeks, 57% ± 16% at 24 weeks, and 48% ± 13% at 34 weeks.The Pearson's correlation test between measurement of aortic wall area performed on both MR images and histologic analysis showed a statistically significant correlation (r = 0.695 and P < 0.05). A correlation was also obtained between the signal loss area and the macrophages covered area (r = 0.68 and P < 0.05). CONCLUSIONS: This study demonstrated the feasibility of USPIO-enhanced MRI in assessing the inflammatory status related to the temporal progression of the atherosclerosis plaque in ApoE transgenic mice model of atherosclerosis. In our experimental conditions, the vascular inflammation peak, for the ApoE mice feeding high-fat/high-cholesterol diet is measured between 16 and 24 weeks of age.


Assuntos
Aorta/patologia , Arteriosclerose/diagnóstico , Inflamação/diagnóstico , Macrófagos/patologia , Imageamento por Ressonância Magnética/instrumentação , Trombose/diagnóstico , Fatores Etários , Análise de Variância , Animais , Apolipoproteínas E , Arteriosclerose/patologia , Progressão da Doença , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Medição de Risco , Ruptura , Software , Estatística como Assunto , Trombose/patologia
8.
Invest Radiol ; 45(5): 262-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20375846

RESUMO

BACKGROUND: M1-activated Macrophages (M1M) play a major role in atherosclerotic lesions of aortic arch, promoting proinflammatory response. In vivo trafficking of M1M in aortic plaques is therefore critical. METHODS: M1M from bone marrow cell culture were magnetically labeled, using iron nanoparticles, intravenously injected and followed up with 3 day magnetic resonance imaging (MRI) in mice developing macrophage-laden atheroma (ApoE2 knock-in mice). M1M recruitment in aortic arch lesions was assessed both by MRI and histology. RESULTS: In all ApoE2 knock-in mice injected with labeled cells, high resolution MRI showed localized signal loss regions in the thickened aortic wall, with a maximal effect at day 2 (-34% +/- 7.3% P < 0.001 compared with baseline). This was confirmed with Prussian blue (iron) staining and corresponded to M1M (Major Histo-compatibility Complex II positive). Clear different intraplaque and adventitial dynamic distribution profiles of labeled cells were observed during the 3 days. CONCLUSION: M1M dynamic MRI is a promising marker to noninvasively assess the macrophage trafficking underlying aortic arch plaque progression.


Assuntos
Doenças da Aorta/diagnóstico , Arteriosclerose/diagnóstico , Ativação de Macrófagos/fisiologia , Imageamento por Ressonância Magnética , Animais , Apolipoproteína E2/genética , Biomarcadores , Técnicas de Introdução de Genes , Macrófagos/fisiologia , Camundongos , Camundongos Transgênicos
9.
Radiology ; 252(2): 401-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19703881

RESUMO

PURPOSE: To evaluate the use of a recently developed fast-clearing ultrasmall superparamagnetic iron oxide (USPIO) for detection of vascular inflammation in atherosclerotic plaque. MATERIALS AND METHODS: The study protocol was approved by the animal experimentation ethics committee. A recently introduced USPIO, P904, and a reference-standard USPIO, ferumoxtran-10, were tested in a rabbit model of induced aortic atherosclerosis. In vivo magnetic resonance (MR) angiography and T2*-weighted plaque MR imaging were performed at baseline and after administration of P904 and ferumoxtran-10 (administered dose for both, 1000 micromol of iron per kilogram of body weight) in 26 hyperlipidemic New Zealand white rabbits. The variation in vessel wall area over time was evaluated with nonparametric testing. Ex vivo MR imaging findings were compared with iron content at linear regression analysis. RESULTS: With in vivo MR imaging, plaque analysis was possible as early as 24 hours after P904 injection. The authors observed a 27.75% increase in vessel wall area due to susceptibility artifacts on day 2 (P = .04) and a 38.81% increase on day 3 (P = .04) after P904 administration compared with a 44.5% increase in vessel wall area on day 7 (P = .04) and a 34.8% increase on day 10 (P = .22) after ferumoxtran-10 administration. These susceptibility artifacts were correlated with intraplaque iron uptake in the corresponding histologic slices. The number of pixels with signal loss on the ex vivo MR images was linearly correlated with the logarithm of the iron concentration (P = .0001; R(2) = 0.93). CONCLUSION: Plaque inflammation in rabbits can be detected earlier with P904 than with ferumoxtran-10 owing to the faster blood pharmacokinetics and the early uptake of P904 in the reticuloendothelial system. SUPPLEMENTAL MATERIAL: http://radiology.rsnajnls.org/cgi/content/full/252/2/401/DC1.


Assuntos
Aortite/metabolismo , Aortite/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Ferro/farmacocinética , Angiografia por Ressonância Magnética/métodos , Óxidos/farmacocinética , Animais , Meios de Contraste/farmacocinética , Dextranos , Modelos Animais de Doenças , Óxido Ferroso-Férrico , Humanos , Nanopartículas de Magnetita , Taxa de Depuração Metabólica , Projetos Piloto , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Eur J Cardiothorac Surg ; 33(1): 53-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18054246

RESUMO

PURPOSE: It is essential to evaluate new stent designs before in vivo testing. The purpose of this study was to develop and validate a controlled and reproducible patient-derived process to produce a life-size in vitro model of aortic arch aneurysm for endovascular procedure simulation. METHODS: A three-dimensional magnetic resonance angiography (3D MRA) image derived from a 60-year-old patient with aortic arch aneurysm was segmented using a home-made software package which allows one-click automatic segmentation of the aorta, meshing, and conversion to standard tessellation language (STL) format. A rapid prototyping technique established a stereolithographic model to produce a replica of the whole aorta, including the arch aneurysm and supra-aortic arteries. RESULTS: The final model was made by pouring silicone rubber to obtain a sturdy, life-size, soft, transparent, plastic cast, accurately reproducing both the internal and external anatomy of the aortic aneurysm. This model was used under perfusion by an extracorporeal circulation pump, to test ex vivo stent deployment. CONCLUSION: The combination of easy segmentation and conversion to the STL format with industrial stereolithography techniques enabled a realistic silicon vascular phantom to be created for endovascular procedure simulation, image modality calibration, and new stent design.


Assuntos
Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Implante de Prótese Vascular/educação , Angiografia por Ressonância Magnética/métodos , Modelos Anatômicos , Simulação por Computador , Humanos , Angiografia por Ressonância Magnética/normas , Desenho de Prótese/normas , Elastômeros de Silicone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA