Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202300575, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695836

RESUMO

Hydrogen heralded as a promising renewable and environmentally friendly energy carrier, carries inherent risks owing to its highly flammable nature. A mere 4 % concentration of hydrogen in the air can trigger an explosion. To counteract this peril, a composite material comprising PbOX -ZnO (2 : 1) was synthesized, characterized, and subsequently employed to fabricate a hydrogen sensing device. Various analytical tools were used to characterize as-deposited materials, including X-ray diffraction, Scanning electron microscopy /Energy Dispersive X-ray Spectroscopy, Transmission electron microscopy UV-Vis Reflectance Spectroscopy and Fourier-transform infrared spectroscopy. The device exhibited favorable properties, such as good selectivity, stability, and a low detection limit for hydrogen. At ambient room temperature, the device demonstrated a sensing signal reaching 468.7, with a response time (T90) of 155 seconds and a recovery time (Tr90) of 69 seconds when exposed to a hydrogen concentration of 5 ppm. This performance underscores the device's rapid and effective response to hydrogen exposure. Moreover, the PbOX-ZnO (2 : 1) composite-based device exhibited a detection limit of 2.4 ppm, functioning accurately within a linear range spanning from 5 ppm to 50 ppm. This capability confirms its precision in accurately detecting hydrogen concentrations within this designated range.

2.
ACS Omega ; 8(33): 30681-30693, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636921

RESUMO

Cationic dyes present in industrial effluents significantly reduce the effectiveness of remediation operations. Considering the terrible impact of these pollutants on environment and biodiversity, investigating strategies to remove potentially harmful compounds from water is becoming an increasingly intriguing issue. In this work, we employed a simple hydrothermal technique to synthesize Fe-doped CdO (2, 4, and 6 wt %) nanostructures and assessed their efficacy in degrading methylene blue (MB) dye and inhibiting the growth of Staphylococcus aureus and Escherichia coli, respectively. Structural, morphological, and optical characterization of produced nanomaterials was also performed using X-ray diffraction, TEM, and UV absorption spectra. The photocatalytic decomposition of MB was significantly enhanced (58.8%) by using Fe (6 wt %)-doped CdO catalysts for 80 min under irradiation. In addition, 2.05-5.05 mm inhibitory zones were seen against Gram-positive bacteria (S. aureus), whereas the range for Gram-negative bacteria (E. coli) was 1.65-2.75 mm. These nanostructures were shown to be very effective inhibitors of beta-lactamase, d-alanine-d-alanine ligase B, and fatty acid synthase inhibitor by in silico molecular docking investigations.

3.
ACS Omega ; 8(22): 19474-19485, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305260

RESUMO

Vanadium oxide (V2O5) and carbon spheres (Cs)-doped NiO2 nanostructures (NSs) were prepared using the co-precipitation approach. Several spectroscopic and microscopic techniques, including X-ray diffraction (XRD), UV-vis, FTIR, TEM, and HR-TEM investigations, were used to describe the as-synthesized NSs. The XRD pattern exhibited the hexagonal structure, and the crystallite size of pristine and doped NSs was calculated as 29.3, 32.8, 25.79, and 45.19 nm, respectively. The control sample (NiO2) showed maximum absorption at 330 nm, and upon doping, a redshift was observed, leading to decreased band gap energy from 3.75 to 3.59 eV. TEM of NiO2 shows agglomerated nonuniform nanorods exhibited with various nanoparticles without a specific orientation; a higher agglomeration was observed upon doping. The (4 wt %) V2O5/Cs-doped NiO2 NSs served as superior catalysts with a 94.21% MB reduction in acidic media. The significant antibacterial efficacy was estimated against Escherichia coli by measuring the zone of inhibition (3.75 mm). Besides their bactericidal analysis, V2O5/Cs-doped NiO2 was shown to have a binding score of 6.37 for dihydrofolate reductase and a binding score of 4.31 for dihydropteroate synthase in an in silico docking study of E. coli.

4.
RSC Adv ; 13(21): 14461-14471, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180010

RESUMO

Semiconductor materials show a restricted degradation response to organic pollutants due to limited photocatalytic activity under visible light. Therefore, researchers have devoted much attention to novel and effective nanocomposite materials. For the first time, herein, a novel nano-sized semiconductor calcium ferrite modified by carbon quantum dots (CaFe2O4/CQDs) photocatalyst is fabricated via simple hydrothermal treatment for the degradation of aromatic dye using a visible light source. The crystalline nature, structure, morphology, and optical parameters of each of the synthesized materials were investigated using X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV-visible spectroscopy. The nanocomposite exhibits excellent photocatalytic performance (90% degradation) against Congo red (CR) dye. In addition, a mechanism for CaFe2O4/CQDs improving photocatalytic performance has been proposed. The CQDs in the CaFe2O4/CQD nanocomposite are considered to act as an electron pool and transporter, as well as a strong energy transfer material, during photocatalysis. CaFe2O4/CQDs appear to be a promising and cost-effective nanocomposite for dye-contaminated water purification, according to the findings of this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA