Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 1): 128870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141705

RESUMO

Tannic acid (TA) is a natural compound studied as the cross-linker for biopolymers due to its ability to form hydrogen bonds. There are different methods to improve its reactivity and effectiveness to be used as a modifier for biopolymeric materials. This work employed plasma to modify tannic acid TA, which was then used as a cross-linker for fabricating collagen/gelatin scaffolds. Plasma treatment did not cause any significant changes in the structure of TA, and the resulting oxidized TA showed a higher antioxidant activity than that without treatment. Adding TA to collagen/gelatin scaffolds improved their mechanical properties and stability. Moreover, the obtained plasma-treated TA-containing scaffolds showed antibacterial properties and were non-hemolytic, with improved cytocompatibility towards human dermal fibroblasts. These results suggest the suitability of plasma treatment as a green technology for the modification of TA towards the development of advanced TA-crosslinked hydrogels for various biomedical applications.


Assuntos
Gelatina , Gases em Plasma , Polifenóis , Humanos , Gelatina/química , Hidrogéis/química , Taninos/química , Colágeno/química , Tecnologia
2.
ACS Pharmacol Transl Sci ; 6(10): 1416-1432, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854626

RESUMO

The enhanced expression of nitric oxide (•NO) synthase predicts triple-negative breast cancer outcome and its resistance to different therapeutics. Our earlier work demonstrated the efficiency of hemin to scavenge the intra- and extracellular •NO, proposing its potency as a therapeutic agent for inhibiting cancer cell migration. In continuation, the present work evaluates the effects of •NO on the migration of MDA-MB-231 cells and how hemin modulates the accompanied cellular behavior, focusing on the corresponding expression of cellular glycoproteins, migration-associated markers, and mitochondrial functions. We demonstrated for the first time that while •NO induced cell migration, hemin contradicted that by •NO-scavenging. This was in combination with modulation of the •NO-enhanced glycosylation patterns of cellular proteins with inhibition of the expression of specific proteins involved in the epithelial-mesenchymal transition. These effects were in conjunction with changes in the mitochondrial functions related to both •NO, hemin, and its nitrosylated product. Together, these results suggest that hemin can be employed as a potential anti-migrating agent targeting •NO-scavenging and regulating the expression of migration-associated proteins.

3.
Biomacromolecules ; 23(9): 3621-3647, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921128

RESUMO

Nitric oxide (•NO) is one of the prominent free radicals, playing a pivotal role in breast cancer progression. Hyaluronic acid (HA) plays an essential role in neutralizing free radicals in tumor tissues. However, its interactions with nitric oxide have not been thoroughly investigated. Hence, this study attempts to understand the mechanism of these interactions and the different effects on the intracellular •NO levels and migration of breast cancer cells. The affinity of HA to scavenge •NO was investigated alongside the accompanying changes in specific physico-chemical properties and the further effects on the •NO-induced attachment and migration of the breast cancer cell lines, MDA-MB-231 and HCC1806. The reaction of the nitrogen dioxide radical, formed via •NO/O2 interactions, with HA initiated a series of oxidative reactions, which, in the presence of •NO, induce the fragmentation of the polymeric chains. Furthermore, these interactions were found to hinder the NO-induced migration of cancer cells. However, the NO-induced HA modification/fragmentation was inhibited in the presence of hemin, a NO-scavenging compound. Collectively, these results help toward understanding the involvement of HA in the •NO-induced cell migration and suggest the possible modification of HA, used as one of the main materials in different biomedical applications.


Assuntos
Neoplasias da Mama , Ácido Hialurônico , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Óxido Nítrico
4.
Nitric Oxide ; 124: 49-67, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513288

RESUMO

Hemin and heme-peroxidases have been considered essential catalysts for the nitrite/hydrogen peroxide (H2O2)-mediated protein nitration in vitro, understood as one of the main pathways for protein modification in biological systems. However, the role of nitric oxide (●NO) in the heme/hemin-induced protein nitration has not been studied in-depth. This is despite its reductive nitrosylating effects following binding to hemin and the possible involvement of the reactive nitrogen species in the nitration of various functional proteins. Here, the ●NO-binding affinity of hemin has been studied along with the influence of ●NO on the internalization of hemin into MDA-MB-231 cells and the accompanying changes in the profile of intracellular nitrated proteins. Moreover, to further understand the mechanism involved, bovine serum albumin (BSA) nitration was studied after treatment with hemin and ●NO, with an investigation of the effects of pH of the reaction medium, generation of H2O2, and the oxidation of the tyrosine residues as the primary sites for the nitration. We demonstrated that hemin nitrosylation enhanced its cellular uptake and induced the one-electron oxidation and nitration of different intracellular proteins along with its ●NO-scavenging efficiency. Moreover, the hemin/NO-mediated BSA nitration was proved to be dependent on the concentration of ●NO and the pH of the reaction medium, with a vital role being played by the scavenging effects of protein for the free hemin molecules. Collectively, our results reaffirm the involvement of hemin and ●NO in the nitration mechanism, where the nitrosylation products can induce protein nitration while promoting the effects of the components of the nitrite/H2O2-mediated pathway.


Assuntos
Hemina , Nitritos , Hemina/química , Hemina/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico , Nitritos/metabolismo , Soroalbumina Bovina/química , Tirosina/química
5.
Biochem Soc Trans ; 48(6): 2539-2555, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33150941

RESUMO

The extracellular matrix (ECM) dynamics in tumour tissue are deregulated compared to the ECM in healthy tissue along with disorganized architecture and irregular behaviour of the residing cells. Nitric oxide (NO) as a pleiotropic molecule exerts different effects on the components of the ECM driving or inhibiting augmented angiogenesis and tumour progression and tumour cell proliferation and metastasis. These effects rely on the concentration of NO within the tumour tissue, the nature of the surrounding microenvironment and the sensitivity of resident cells to NO. In this review article, we summarize the recent findings on the correlation between the levels of NO and the ECM components towards the modulation of tumour angiogenesis in different types of cancers. These are discussed principally in the context of how NO modulates the expression of ECM proteins resulting in either the promotion or inhibition of tumour growth via tumour angiogenesis. Furthermore, the regulatory effects of individual ECM components on the expression of the NO synthase enzymes and NO production were reviewed. These findings support the current efforts for developing effective therapeutics for cancers.


Assuntos
Matriz Extracelular/metabolismo , Neovascularização Patológica , Óxido Nítrico/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma/patologia , Melanoma Experimental , Morfogênese , Metástase Neoplásica , Neoplasias/patologia , Resistência ao Cisalhamento , Estresse Mecânico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA