Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 16(1): 21, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308367

RESUMO

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
2.
medRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352394

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.

3.
Cell Rep ; 32(2): 107881, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668250

RESUMO

Developing strategies that promote the resolution of vascular inflammation and atherosclerosis remains a major therapeutic challenge. Here, we show that exosomes produced by naive bone marrow-derived macrophages (BMDM-exo) contain anti-inflammatory microRNA-99a/146b/378a that are further increased in exosomes produced by BMDM polarized with IL-4 (BMDM-IL-4-exo). These exosomal microRNAs suppress inflammation by targeting NF-κB and TNF-α signaling and foster M2 polarization in recipient macrophages. Repeated infusions of BMDM-IL-4-exo into Apoe-/- mice fed a Western diet reduce excessive hematopoiesis in the bone marrow and thereby the number of myeloid cells in the circulation and macrophages in aortic root lesions. This also leads to a reduction in necrotic lesion areas that collectively stabilize atheroma. Thus, BMDM-IL-4-exo may represent a useful therapeutic approach for atherosclerosis and other inflammatory disorders by targeting NF-κB and TNF-α via microRNA cargo delivery.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Exossomos/metabolismo , Hematopoese/genética , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Polaridade Celular , Exossomos/ultraestrutura , Edição de Genes , Humanos , Interleucina-4/metabolismo , Macrófagos/ultraestrutura , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Distribuição Tecidual , Fator de Necrose Tumoral alfa/metabolismo
4.
Acta Neuropathol ; 138(1): 49-65, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30945056

RESUMO

The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.


Assuntos
Adenosina Desaminase/genética , Proteína C9orf72/genética , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Esclerose Lateral Amiotrófica/genética , Animais , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Doença de Pick/genética
5.
BMC Genomics ; 19(1): 331, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29728066

RESUMO

BACKGROUND: Evolving interest in comprehensively profiling the full range of small RNAs present in small tissue biopsies and in circulating biofluids, and how the profile differs with disease, has launched small RNA sequencing (RNASeq) into more frequent use. However, known biases associated with small RNASeq, compounded by low RNA inputs, have been both a significant concern and a hurdle to widespread adoption. As RNASeq is becoming a viable choice for the discovery of small RNAs in low input samples and more labs are employing it, there should be benchmark datasets to test and evaluate the performance of new sequencing protocols and operators. In a recent publication from the National Institute of Standards and Technology, Pine et al., 2018, the investigators used a commercially available set of three tissues and tested performance across labs and platforms. RESULTS: In this paper, we further tested the performance of low RNA input in three commonly used and commercially available RNASeq library preparation kits; NEB Next, NEXTFlex, and TruSeq small RNA library preparation. We evaluated the performance of the kits at two different sites, using three different tissues (brain, liver, and placenta) with high (1 µg) and low RNA (10 ng) input from tissue samples, or 5.0, 3.0, 2.0, 1.0, 0.5, and 0.2 ml starting volumes of plasma. As there has been a lack of robust validation platforms for differentially expressed miRNAs, we also compared low input RNASeq data with their expression profiles on three different platforms (Abcam Fireplex, HTG EdgeSeq, and Qiagen miRNome). CONCLUSIONS: The concordance of RNASeq results on these three platforms was dependent on the RNA expression level; the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit performance using low RNA input, and replication of these data on three downstream technologies.


Assuntos
Biblioteca Gênica , RNA/metabolismo , Encéfalo/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/metabolismo , MicroRNAs/análise , MicroRNAs/química , Placenta/metabolismo , Gravidez , Análise de Componente Principal , RNA/química , Kit de Reagentes para Diagnóstico , Análise de Sequência de RNA
6.
ISME J ; 11(9): 2141-2154, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28524866

RESUMO

Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Campos de Petróleo e Gás/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Nitratos/metabolismo , Mar do Norte , Petróleo/metabolismo , Água do Mar/microbiologia , Sulfetos/metabolismo
7.
Appl Environ Microbiol ; 82(8): 2545-2554, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896143

RESUMO

Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biofilmes , Biota , Corrosão , Microbiologia Ambiental , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Biológicos , Campos de Petróleo e Gás , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA